4.2.2 Coproducts of Families of Sets

    Let $\left\{ A_{i}\right\} _{i\in I}$ be a family of sets.

    The coproduct of $\left\{ A_{i}\right\} _{i\in I}$1 is the coproduct of $\left\{ A_{i}\right\} _{i\in I}$ in $\mathsf{Sets}$ as in Unresolved reference, Unresolved reference.


    1. 1Further Terminology: Also called the disjoint union of the family $\left\{ A_{i}\right\} _{i\in I}$.

    Concretely, the disjoint union of $\left\{ A_{i}\right\} _{i\in I}$ is the pair $\webleft (\coprod _{i\in I}A_{i},\left\{ \mathrm{inj}_{i}\right\} _{i\in I}\webright )$ consisting of:

    1. 1.

      The Colimit. The set $\coprod _{i\in I}A_{i}$ defined by

      \[ \coprod _{i\in I}A_{i}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \webleft (i,x\webright )\in I\times \left(\bigcup _{i\in I}A_{i}\right)\ \middle |\ \text{$x\in A_{i}$}\right\} . \]
    2. 2.

      The Cocone. The collection

      \[ \left\{ \mathrm{inj}_{i} \colon A_{i}\to \coprod _{i\in I}A_{i}\right\} _{i\in I} \]

      of maps given by

      \[ \mathrm{inj}_{i}\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (i,x\webright ) \]

      for each $x\in A_{i}$ and each $i\in I$.

    We claim that $\coprod _{i\in I}A_{i}$ is the categorical coproduct of $\left\{ A_{i}\right\} _{i\in I}$ in $\mathsf{Sets}$. Indeed, suppose we have, for each $i\in I$, a diagram of the form

    in $\mathsf{Sets}$. Then there exists a unique map $\phi \colon \coprod _{i\in I}A_{i}\to C$ making the diagram
    commute, being uniquely determined by the condition $\phi \circ \mathrm{inj}_{i}=\iota _{i}$ for each $i\in I$ via

    \[ \phi \webleft (\webleft (i,x\webright )\webright )=\iota _{i}\webleft (x\webright ) \]

    for each $\webleft (i,x\webright )\in \coprod _{i\in I}A_{i}$.

    Let $\left\{ A_{i}\right\} _{i\in I}$ be a family of sets.

  • 1.

    Functoriality. The assignment $\left\{ A_{i}\right\} _{i\in I}\mapsto \coprod _{i\in I}A_{i}$ defines a functor

    \[ \coprod _{i\in I}\colon \mathsf{Fun}\webleft (I_{\mathsf{disc}},\mathsf{Sets}\webright )\to \mathsf{Sets} \]

    where

    • Action on Objects. For each $\webleft (A_{i}\webright )_{i\in I}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Fun}\webleft (I_{\mathsf{disc}},\mathsf{Sets}\webright )\webright )$, we have

      \[ \left[\coprod _{i\in I}\right]\webleft (\webleft (A_{i}\webright )_{i\in I}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\coprod _{i\in I}A_{i} \]
    • Action on Morphisms. For each $\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Fun}\webleft (I_{\mathsf{disc}},\mathsf{Sets}\webright )\webright )$, the action on $\operatorname {\mathrm{Hom}}$-sets

      \[ \left(\coprod _{i\in I}\right)_{\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}} \colon \operatorname {\mathrm{Nat}}\webleft (\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}\webright )\to \mathsf{Sets}\left(\coprod _{i\in I}A_{i},\coprod _{i\in I}B_{i}\right) \]

      of $\coprod _{i\in I}$ at $\webleft (\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}\webright )$ is defined by sending a map

      \[ \left\{ f_{i}\colon A_{i}\to B_{i} \right\} _{i\in I} \]

      in $\operatorname {\mathrm{Nat}}\webleft (\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}\webright )$ to the map of sets

      \[ \coprod _{i\in I}f_{i}\colon \coprod _{i\in I}A_{i}\to \coprod _{i\in I}B_{i} \]

      defined by

      \[ \left[\coprod _{i\in I}f_{i}\right]\webleft (i,a\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{i}\webleft (a\webright ) \]

      for each $\webleft (i,a\webright )\in \coprod _{i\in I}A_{i}$.

  • Item 1: Functoriality
    This follows from Unresolved reference, Unresolved reference of Unresolved reference.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: