4.3.9 Binary Intersections

Let $X$ be a set and let $U,V\in \mathcal{P}(X)$.

The intersection of $U$ and $V$ is the set $U\cap V$ defined by

\begin{align*} U\cap V & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcap _{z\in \left\{ U,V\right\} }z\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \text{$x\in U$ or $x\in V$}\right\} . \end{align*}

Let $X$ be a set.

  1. 1.

    Functoriality. The assignments $U,V,(U,V)\mapsto U\cap V$ define functors

    \[ \begin{array}{ccc} U\cap -\colon \mkern -15mu & (\mathcal{P}(X),\subset ) \mkern -17.5mu& {}\mathbin {\to }(\mathcal{P}(X),\subset ),\\ -\cap V\colon \mkern -15mu & (\mathcal{P}(X),\subset ) \mkern -17.5mu& {}\mathbin {\to }(\mathcal{P}(X),\subset ),\\ -_{1}\cap -_{2}\colon \mkern -15mu & (\mathcal{P}(X)\times \mathcal{P}(X),\subset \times \subset ) \mkern -17.5mu& {}\mathbin {\to }(\mathcal{P}(X),\subset ). \end{array} \]

    In particular, the following statements hold for each $U,V,A,B\in \mathcal{P}(X)$:

    1. (a)

      If $U\subset A$, then $U\cap V\subset A\cap V$.

    2. (b)

      If $V\subset B$, then $U\cap V\subset U\cap B$.

    3. (c)

      If $U\subset A$ and $V\subset B$, then $U\cap V\subset A\cap B$.

  2. 2.

    Adjointness. We have adjunctions

    witnessed by bijections

    \begin{align*} \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(U\cap V,W) & \cong \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(U,[V,W]_{X}),\\ \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(U\cap V,W) & \cong \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(V,[U,W]_{X}), \end{align*}

    natural in $U,V,W\in \mathcal{P}(X)$, where

    \[ [-_{1},-_{2}]_{X}\colon \mathcal{P}(X)\mkern -0.0mu^{\mathsf{op}}\times \mathcal{P}(X) \to \mathcal{P}(X) \]

    is the bifunctor of Section 4.4.7. In particular, the following statements hold for each $U,V,W\in \mathcal{P}(X)$:

    1. (a)

      The following conditions are equivalent:

      1. (i)

        We have $U\cap V\subset W$.

      2. (ii)

        We have $U\subset [V,W]_{X}$.

    2. (b)

      The following conditions are equivalent:

      1. (i)

        We have $U\cap V\subset W$.

      2. (ii)

        We have $V\subset [U,W]_{X}$.

  3. 3.

    Associativity. The diagram

    commutes, i.e. we have an equality of sets

    \[ (U\cap V)\cap W=U\cap (V\cap W) \]

    for each $U,V,W\in \mathcal{P}(X)$.

  4. 4.

    Unitality. The diagrams

    commute, i.e. we have equalities of sets

    \begin{align*} X\cap U & = U,\\ U\cap X & = U \end{align*}

    for each $U\in \mathcal{P}(X)$.

  5. 5.

    Commutativity. The diagram

    commutes, i.e. we have an equality of sets

    \[ U\cap V= V\cap U \]

    for each $U,V\in \mathcal{P}(X)$.

  6. 6.

    Annihilation With the Empty Set. The diagrams

    commute, i.e. we have equalities of sets

    \begin{align*} \text{Ø}\cap X & = \text{Ø},\\ X\cap \text{Ø}& = \text{Ø}\end{align*}

    for each $U\in \mathcal{P}(X)$.

  7. 7.

    Distributivity of Unions Over Intersections. The diagrams

    commute, i.e. we have equalities of sets

    \begin{align*} U\cup (V\cap W) & = (U\cup V)\cap (U\cup W),\\ (U\cap V)\cup W & = (U\cup W)\cap (V\cup W) \end{align*}

    for each $U,V,W\in \mathcal{P}(X)$.

  8. 8.

    Distributivity of Intersections Over Unions. The diagrams

    commute, i.e. we have equalities of sets

    \begin{align*} U\cap (V\cup W) & = (U\cap V)\cup (U\cap W),\\ (U\cup V)\cap W & = (U\cap W)\cup (V\cap W) \end{align*}

    for each $U,V,W\in \mathcal{P}(X)$.

  9. 9.

    Idempotency. The diagram

    commutes, i.e. we have an equality of sets

    \[ U\cap U=U \]

    for each $U\in \mathcal{P}(X)$.

  10. 10.

    Interaction With Characteristic Functions I. We have

    \[ \chi _{U\cap V}=\chi _{U}\chi _{V} \]

    for each $U,V\in \mathcal{P}(X)$.

  11. 11.

    Interaction With Characteristic Functions II. We have

    \[ \chi _{U\cap V}=\operatorname*{\operatorname {\mathrm{min}}}(\chi _{U},\chi _{V}) \]

    for each $U,V\in \mathcal{P}(X)$.

  12. 12.

    Interaction With Direct Images. Let $f\colon X\to Y$ be a function. We have a natural transformation

    with components

    \[ f_{!}(U\cap V)\subset f_{!}(U)\cap f_{!}(V) \]

    indexed by $U,V\in \mathcal{P}(X)$.

  13. 13.

    Interaction With Inverse Images. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have

    \[ f^{-1}(U\cap V)=f^{-1}(U)\cap f^{-1}(V) \]

    for each $U,V\in \mathcal{P}(Y)$.

  14. 14.

    Interaction With Codirect Images. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have

    \[ f_{*}(U)\cap f_{*}(V)=f_{*}(U\cap V) \]

    for each $U,V\in \mathcal{P}(X)$.

  15. 15.

    Interaction With Powersets and Monoids With Zero. The quadruple $((\mathcal{P}(X),\text{Ø}),\cap ,X)$ is a commutative monoid with zero.

  16. 16.

    Interaction With Powersets and Semirings. The quintuple $(\mathcal{P}(X),\cup ,\cap ,\text{Ø},X)$ is an idempotent commutative semiring.

Item 1: Functoriality
See [Proof Wiki Contributors, Set Intersection Preserves Subsets — Proof Wiki].

Item 2: Adjointness
See [Lin, Show that the powerset partial order is a cartesian closed category.].

Item 3: Associativity
See [Proof Wiki Contributors, Intersection Is Associative — Proof Wiki].

Item 4: Unitality
This follows from [Proof Wiki Contributors, Intersection With Subset Is Subset — Proof Wiki] and Item 5.

Item 5: Commutativity
See [Proof Wiki Contributors, Intersection Is Commutative — Proof Wiki].

Item 6: Annihilation With the Empty Set
This follows from [Proof Wiki Contributors, Intersection With Empty Set — Proof Wiki] and Item 5.

Item 7: Distributivity of Unions Over Intersections
See [Proof Wiki Contributors, Union Distributes Over Intersection — Proof Wiki].

Item 8: Distributivity of Intersections Over Unions
See [Proof Wiki Contributors, Set Intersection Distributes Over Union — Proof Wiki].

Item 9: Idempotency
See [Proof Wiki Contributors, Set Intersection Is Idempotent — Proof Wiki].

Item 10: Interaction With Characteristic Functions I
See [Proof Wiki Contributors, Characteristic Function of Intersection — Proof Wiki].

Item 11: Interaction With Characteristic Functions II
See [Proof Wiki Contributors, Characteristic Function of Intersection — Proof Wiki].

Item 12: Interaction With Direct Images
See [Proof Wiki Contributors, Image of Intersection Under Mapping — Proof Wiki].

Item 13: Interaction With Inverse Images
See [Proof Wiki Contributors, Preimage of Intersection Under Mapping — Proof Wiki].

Item 14: Interaction With Codirect Images
This is a repetition of Item 6 of Proposition 4.6.3.1.7 and is proved there.

Item 15: Interaction With Powersets and Monoids With Zero
This follows from Item 3, Item 4, Item 5, and Item 6.

Item 16: Interaction With Powersets and Semirings
This follows from Item 2, Item 3, Item 4, and Item 8 and Item 3, Item 4, Item 5, Item 8, and Item 6 of Proposition 4.3.9.1.2.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: