6.1.3 The Category of Pointed Sets

The category of pointed sets is the category $\mathsf{Sets}_{*}$ defined equivalently as:

  • The homotopy category of the $\infty $-category $\mathsf{Mon}_{\mathbb {E}_{0}}(\mathrm{N}_{\bullet }(\mathsf{Sets}),\mathrm{pt})$ of Unresolved reference, Unresolved reference.

  • The category $\mathsf{Sets}_{*}$ of Unresolved reference, Unresolved reference.

In detail, the category of pointed sets is the category $\mathsf{Sets}_{*}$ where:

  • Objects. The objects of $\mathsf{Sets}_{*}$ are pointed sets.

  • Morphisms. The morphisms of $\mathsf{Sets}_{*}$ are morphisms of pointed sets.

  • Identities. For each $(X,x_{0})\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$, the unit map

    \[ \mathbb {1}^{\mathsf{Sets}_{*}}_{(X,x_{0})} \colon \mathrm{pt}\to \mathsf{Sets}_{*}((X,x_{0}),(X,x_{0})) \]

    of $\mathsf{Sets}_{*}$ at $(X,x_{0})$ is defined by1

    \[ \operatorname {\mathrm{id}}^{\mathsf{Sets}_{*}}_{(X,x_{0})} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{id}}_{X}. \]
  • Composition. For each $(X,x_{0}),(Y,y_{0}),(Z,z_{0})\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$, the composition map

    \[ \circ ^{\mathsf{Sets}_{*}}_{(X,x_{0}),(Y,y_{0}),(Z,z_{0})} \colon \mathsf{Sets}_{*}((Y,y_{0}),(Z,z_{0})) \times \mathsf{Sets}_{*}((X,x_{0}),(Y,y_{0})) \to \mathsf{Sets}_{*}((X,x_{0}),(Z,z_{0})) \]
    of $\mathsf{Sets}_{*}$ at $((X,x_{0}),(Y,y_{0}),(Z,z_{0}))$ is defined by2

    \[ g\mathbin {{\circ }^{\mathsf{Sets}_{*}}_{(X,x_{0}),(Y,y_{0}),(Z,z_{0})}}f \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g\circ f. \]


  1. 1Note that $\operatorname {\mathrm{id}}_{X}$ is indeed a morphism of pointed sets, as we have $\operatorname {\mathrm{id}}_{X}(x_{0})=x_{0}$.
  2. 2Note that the composition of two morphisms of pointed sets is indeed a morphism of pointed sets, as we have


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: