The category of pointed sets is the category $\mathsf{Sets}_{*}$ defined equivalently as:
The category of pointed sets is the category $\mathsf{Sets}_{*}$ defined equivalently as:
In detail, the category of pointed sets is the category $\mathsf{Sets}_{*}$ where:
Objects. The objects of $\mathsf{Sets}_{*}$ are pointed sets.
Morphisms. The morphisms of $\mathsf{Sets}_{*}$ are morphisms of pointed sets.
Identities. For each $(X,x_{0})\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$, the unit map
of $\mathsf{Sets}_{*}$ at $(X,x_{0})$ is defined by1
Composition. For each $(X,x_{0}),(Y,y_{0}),(Z,z_{0})\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$, the composition map