The category of pointed sets is the category $\mathsf{Sets}_{*}$ defined equivalently as:
The category of pointed sets is the category $\mathsf{Sets}_{*}$ defined equivalently as:
In detail, the category of pointed sets is the category $\mathsf{Sets}_{*}$ where:
Objects. The objects of $\mathsf{Sets}_{*}$ are pointed sets.
Morphisms. The morphisms of $\mathsf{Sets}_{*}$ are morphisms of pointed sets.
Identities. For each $\webleft (X,x_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$, the unit map
of $\mathsf{Sets}_{*}$ at $\webleft (X,x_{0}\webright )$ is defined by1
Composition. For each $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$, the composition map