6.2.2 Products of Families of Pointed Sets

    Let $\left\{ \webleft (X_{i},x^{i}_{0}\webright )\right\} _{i\in I}$ be a family of pointed sets.

    The product of $\smash {\left\{ \webleft (X_{i},x^{i}_{0}\webright )\right\} _{i\in I}}$ is the product of $\left\{ \webleft (X_{i},x^{i}_{0}\webright )\right\} _{i\in I}$ in $\mathsf{Sets}_{*}$ as in Unresolved reference, Unresolved reference.

    Concretely, the product of $\smash {\left\{ \webleft (X_{i},x^{i}_{0}\webright )\right\} _{i\in I}}$ is the pair $\smash {\webleft (\webleft (\prod _{i\in I}X_{i},\webleft (x^{i}_{0}\webright )_{i\in I}\webright ),\left\{ \operatorname {\mathrm{\mathrm{pr}}}_{i}\right\} _{i\in I}\webright )}$ consisting of:

    • The Limit. The pointed set $\webleft (\prod _{i\in I}X_{i},\webleft (x^{i}_{0}\webright )_{i\in I}\webright )$.

    • The Cone. The collection

      \[ \left\{ \operatorname {\mathrm{\mathrm{pr}}}_{i} \colon \webleft (\prod _{i\in I}X_{i},\webleft (x^{i}_{0}\webright )_{i\in I}\webright )\to \webleft (X_{i},x^{i}_{0}\webright )\right\} _{i\in I} \]

      of maps given by

      \[ \operatorname {\mathrm{\mathrm{pr}}}_{i}\webleft (\webleft (x_{j}\webright )_{j\in I}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x_{i} \]

      for each $\webleft (x_{j}\webright )_{j\in I}\in \prod _{i\in I}X_{i}$ and each $i\in I$.

    We claim that $\smash {\webleft (\prod _{i\in I}X_{i},\webleft (x^{i}_{0}\webright )_{i\in I}\webright )}$ is the categorical product of $\smash {\left\{ \webleft (X_{i},x^{i}_{0}\webright )\right\} _{i\in I}}$ in $\mathsf{Sets}_{*}$. Indeed, suppose we have, for each $i\in I$, a diagram of the form

    in $\mathsf{Sets}_{*}$. Then there exists a unique morphism of pointed sets

    \[ \phi \colon \webleft (P,*\webright )\to \webleft (\prod _{i\in I}X_{i},\webleft (x^{i}_{0}\webright )_{i\in I}\webright ) \]

    making the diagram

    commute, being uniquely determined by the condition $\operatorname {\mathrm{\mathrm{pr}}}_{i}\circ \phi =p_{i}$ for each $i\in I$ via

    \[ \phi \webleft (x\webright )=\webleft (p_{i}\webleft (x\webright )\webright )_{i\in I} \]

    for each $x\in P$. Note that this is indeed a morphism of pointed sets, as we have

    \begin{align*} \phi \webleft (*\webright ) & = \webleft (p_{i}\webleft (*\webright )\webright )_{i\in I}\\ & = \webleft (x^{i}_{0}\webright )_{i\in I},\end{align*}

    where we have used that $p_{i}$ is a morphism of pointed sets for each $i\in I$.

    Let $\left\{ \webleft (X_{i},x^{i}_{0}\webright )\right\} _{i\in I}$ be a family of pointed sets.

  • 1.

    Functoriality. The assignment $\left\{ \webleft (X_{i},x^{i}_{0}\webright )\right\} _{i\in I}\mapsto \webleft (\prod _{i\in I}X_{i},\webleft (x^{i}_{0}\webright )_{i\in I}\webright )$ defines a functor

    \[ \prod _{i\in I}\colon \mathsf{Fun}\webleft (I_{\mathsf{disc}},\mathsf{Sets}_{*}\webright )\to \mathsf{Sets}_{*}. \]
  • Item 1: Functoriality
    This follows from Unresolved reference, Unresolved reference of Unresolved reference.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: