The equaliser of $(f,g)$ is the equaliser of $f$ and $g$ in $\mathsf{Sets}_{*}$ as in ,
.
6.2.5 Equalisers
Let $f,g\colon (X,x_{0})\rightrightarrows (Y,y_{0})$ be morphisms of pointed sets.
Concretely, the equaliser of $(f,g)$ is the pair consisting of:
-
•
The Limit. The pointed set $(\operatorname {\mathrm{Eq}}(f,g),x_{0})$.
-
•
The Cone. The morphism of pointed sets
\[ \operatorname {\mathrm{eq}}(f,g)\colon (\operatorname {\mathrm{Eq}}(f,g),x_{0})\hookrightarrow (X,x_{0}) \]given by the canonical inclusion $\operatorname {\mathrm{eq}}(f,g)\hookrightarrow \operatorname {\mathrm{Eq}}(f,g)\hookrightarrow X$.
We claim that $(\operatorname {\mathrm{Eq}}(f,g),x_{0})$ is the categorical equaliser of $f$ and $g$ in $\mathsf{Sets}_{*}$. First we need to check that the relevant equaliser diagram commutes, i.e. that we have
which indeed holds by the definition of the set $\operatorname {\mathrm{Eq}}(f,g)$. Next, we prove that $\operatorname {\mathrm{Eq}}(f,g)$ satisfies the universal property of the equaliser. Suppose we have a diagram of the form
making the diagram
via
for each $x\in E$, where we note that $e(x)\in A$ indeed lies in $\operatorname {\mathrm{Eq}}(f,g)$ by the condition
which gives
for each $x\in E$, so that $e(x)\in \operatorname {\mathrm{Eq}}(f,g)$. Lastly, we note that $\phi $ is indeed a morphism of pointed sets, as we have
where we have used that $e$ is a morphism of pointed sets.
Let $(X,x_{0})$ and $(Y,y_{0})$ be pointed sets and let $f,g,h\colon (X,x_{0})\to (Y,y_{0})$ be morphisms of pointed sets.
-
1.
Associativity. We have isomorphisms of pointed sets
\[ \underbrace{\operatorname {\mathrm{Eq}}(f\circ \operatorname {\mathrm{eq}}(g,h),g\circ \operatorname {\mathrm{eq}}(g,h))}_{{}=\operatorname {\mathrm{Eq}}(f\circ \operatorname {\mathrm{eq}}(g,h),h\circ \operatorname {\mathrm{eq}}(g,h))}\cong \operatorname {\mathrm{Eq}}(f,g,h) \cong \underbrace{\operatorname {\mathrm{Eq}}(f\circ \operatorname {\mathrm{eq}}(f,g),h\circ \operatorname {\mathrm{eq}}(f,g))}_{{}=\operatorname {\mathrm{Eq}}(g\circ \operatorname {\mathrm{eq}}(f,g),h\circ \operatorname {\mathrm{eq}}(f,g))}, \]in $\mathsf{Sets}_{*}$, being explicitly given by\[ \operatorname {\mathrm{Eq}}(f,g,h)\cong \left\{ a\in A\ \middle |\ f(a)=g(a)=h(a)\right\} . \] -
2.
Unitality. We have an isomorphism of pointed sets
\[ \operatorname {\mathrm{Eq}}(f,f)\cong X. \] -
3.
Commutativity. We have an isomorphism of pointed sets
\[ \operatorname {\mathrm{Eq}}(f,g) \cong \operatorname {\mathrm{Eq}}(g,f). \]