6.3.2 Coproducts of Families of Pointed Sets

Let $\left\{ \webleft (X_{i},x^{i}_{0}\webright )\right\} _{i\in I}$ be a family of pointed sets.

The coproduct of the family $\smash {\left\{ \webleft (X_{i},x^{i}_{0}\webright )\right\} _{i\in I}}$1 is the coproduct of $\smash {\left\{ \webleft (X_{i},x^{i}_{0}\webright )\right\} _{i\in I}}$ in $\mathsf{Sets}_{*}$ as in Unresolved reference, Unresolved reference.


  1. 1Further Terminology: Also called the wedge sum of the family $\smash {\left\{ \webleft (X_{i},x^{i}_{0}\webright )\right\} _{i\in I}}$.

Concretely, the coproduct of the family $\smash {\left\{ \webleft (X_{i},x^{i}_{0}\webright )\right\} _{i\in I}}$ is the pair $\smash {\webleft (\webleft (\bigvee _{i\in I}X_{i},p_{0}\webright ),\left\{ \mathrm{inj}_{i}\right\} _{i\in I}\webright )}$ consisting of:

  • The Colimit. The pointed set $\webleft (\bigvee _{i\in I}X_{i},p_{0}\webright )$ consisting of:

    • The Underlying Set. The set $\bigvee _{i\in I}X_{i}$ defined by

      \[ \bigvee _{i\in I}X_{i}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\coprod _{i\in I}X_{i}\webright )/\mathord {\sim }, \]

      where $\mathord {\sim }$ is the equivalence relation on $\coprod _{i\in I}X_{i}$ given by declaring

      \[ \webleft (i,x^{i}_{0}\webright )\sim \webleft (j,x^{j}_{0}\webright ) \]

      for each $i,j\in I$.

    • The Basepoint. The element $p_{0}$ of $\bigvee _{i\in I}X_{i}$ defined by

      \begin{align*} p_{0} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (i,x^{i}_{0}\webright )\webright ]\\ & = \webleft [\webleft (j,x^{j}_{0}\webright )\webright ] \end{align*}

      for any $i,j\in I$.

  • The Cocone. The collection

    \[ \left\{ \mathrm{inj}_{i} \colon \webleft (X_{i},x^{i}_{0}\webright )\to \webleft (\bigvee _{i\in I}X_{i},p_{0}\webright )\right\} _{i\in I} \]

    of morphism of pointed sets given by

    \[ \mathrm{inj}_{i}\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (i,x\webright ) \]

    for each $x\in X_{i}$ and each $i\in I$.

We claim that $\smash {\webleft (\bigvee _{i\in I}X_{i},p_{0}\webright )}$ is the categorical coproduct of $\smash {\left\{ \webleft (X_{i},x^{i}_{0}\webright )\right\} _{i\in I}}$ in $\mathsf{Sets}_{*}$. Indeed, suppose we have, for each $i\in I$, a diagram of the form

in $\mathsf{Sets}_{*}$. Then there exists a unique morphism of pointed sets

\[ \phi \colon \webleft (\bigvee _{i\in I}X_{i},p_{0}\webright )\to \webleft (C,*\webright ) \]

making the diagram

commute, being uniquely determined by the condition $\phi \circ \mathrm{inj}_{i}=\iota _{i}$ for each $i\in I$ via

\[ \phi \webleft (\webleft [\webleft (i,x\webright )\webright ]\webright )=\iota _{i}\webleft (x\webright ) \]

for each $\webleft [\webleft (i,x\webright )\webright ]\in \bigvee _{i\in I}X_{i}$, where we note that $\phi $ is indeed a morphism of pointed sets, as we have

\begin{align*} \phi \webleft (p_{0}\webright ) & = \iota _{i}\webleft (\webleft [\webleft (i,x^{i}_{0}\webright )\webright ]\webright )\\ & = *, \end{align*}

as $\iota _{i}$ is a morphism of pointed sets.

Let $\left\{ \webleft (X_{i},x^{i}_{0}\webright )\right\} _{i\in I}$ be a family of pointed sets.

  1. 1.

    Functoriality. The assignment $\left\{ \webleft (X_{i},x^{i}_{0}\webright )\right\} _{i\in I}\mapsto \webleft (\bigvee _{i\in I}X_{i},p_{0}\webright )$ defines a functor

    \[ \bigvee _{i\in I}\colon \mathsf{Fun}\webleft (I_{\mathsf{disc}},\mathsf{Sets}_{*}\webright )\to \mathsf{Sets}_{*}. \]

Item 1: Functoriality
This follows from Unresolved reference, Unresolved reference of Unresolved reference.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: