The right internal Hom1 of pointed sets is the functor
defined as the composition
where:
-
•
${\text{忘}}\colon \mathsf{Sets}_{*}\to \mathsf{Sets}$ is the forgetful functor from pointed sets to sets.
-
•
$\pitchfork \colon \mathsf{Sets}^{\mathsf{op}}\times \mathsf{Sets}_{*}\to \mathsf{Sets}_{*}$ is the cotensor functor of Item 1 of Proposition 7.2.2.1.4.
- 1For a proof that $[-,-]^{\rhd }_{\mathsf{Sets}_{*}}$ is indeed the right internal Hom of $\mathsf{Sets}_{*}$ with respect to the right tensor product of pointed sets, see Item 2 of Proposition 7.4.1.1.7.