7.5.8 The Diagonal

    The diagonal of the smash product of pointed sets is the natural transformation

    whose component

    \[ \Delta ^{\wedge }_{X}\colon \webleft (X,x_{0}\webright )\to \webleft (X\wedge X,x_{0}\wedge x_{0}\webright ) \]

    at $\webleft (X,x_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$ is given by the composition

    in $\mathsf{Sets}_{*}$, and thus by

    \[ \Delta ^{\wedge }_{X}\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x\wedge x \]

    for each $x\in X$.

    Being a Morphism of Pointed Sets
    We have

    \[ \Delta ^{\wedge }_{X}\webleft (x_{0}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x_{0}\wedge x_{0}, \]

    and thus $\Delta ^{\wedge }_{X}$ is a morphism of pointed sets.

    Naturality
    We need to show that, given a morphism of pointed sets

    \[ f\colon \webleft (X,x_{0}\webright )\to \webleft (Y,y_{0}\webright ), \]

    the diagram

    commutes. Indeed, this diagram acts on elements as
    and hence indeed commutes, showing $\Delta ^{\wedge }$ to be natural.

    Let $\webleft (X,x_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$.

  • 1.

    Monoidality. The diagonal

    \[ \Delta ^{\wedge }\colon \operatorname {\mathrm{id}}_{\mathsf{Sets}_{*}}\Longrightarrow {\wedge }\circ {\Delta ^{\mathsf{Cats}_{\mathsf{2}}}_{\mathsf{Sets}_{*}}}, \]

    of the smash product of pointed sets is a monoidal natural transformation:

    1. (a)

      Compatibility With Strong Monoidality Constraints. For each $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$, the diagram

      commutes.

    2. (b)

      Compatibility With Strong Unitality Constraints. The diagrams

      commute, i.e. we have

      \begin{align*} \Delta ^{\wedge }_{S^{0}} & = \lambda ^{\mathsf{Sets}_{*},-1}_{S^{0}}\\ & = \rho ^{\mathsf{Sets}_{*},-1}_{S^{0}}, \end{align*}

      where we recall that the equalities

      \begin{align*} \lambda ^{\mathsf{Sets}_{*}}_{S^{0}} & = \rho ^{\mathsf{Sets}_{*}}_{S^{0}},\\ \lambda ^{\mathsf{Sets}_{*},-1}_{S^{0}} & = \rho ^{\mathsf{Sets}_{*},-1}_{S^{0}}\end{align*}

      are always true in any monoidal category by Unresolved reference, Unresolved reference of Unresolved reference.

  • 2.

    The Diagonal of the Unit. The component

    \[ \Delta ^{\wedge }_{S^{0}} \colon S^{0} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }S^{0}\wedge S^{0} \]

    of $\Delta ^{\wedge }$ at $S^{0}$ is an isomorphism.

  • Item 1: Monoidality
    We claim that $\Delta ^{\wedge }$ is indeed monoidal:

    1. 1.

      Item 1a: Compatibility With Strong Monoidality Constraints: We need to show that the diagram

      commutes. Indeed, this diagram acts on elements as
      and hence indeed commutes.

    2. 2.

      Item 1b: Compatibility With Strong Unitality Constraints: As shown in the proof of Definition 7.5.5.1.1, the inverse of the left unitor of $\mathsf{Sets}_{*}$ with respect to to the smash product of pointed sets at $\webleft (X,x_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$ is given by

      \[ \lambda ^{\mathsf{Sets}_{*},-1}_{X}\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}1\wedge x \]

      for each $x\in X$, so when $X=S^{0}$, we have

      \begin{align*} \lambda ^{\mathsf{Sets}_{*},-1}_{S^{0}}\webleft (0\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}1\wedge 0,\\ \lambda ^{\mathsf{Sets}_{*},-1}_{S^{0}}\webleft (1\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}1\wedge 1. \end{align*}

      But since $1\wedge 0=0\wedge 0$ and

      \begin{align*} \Delta ^{\wedge }_{S^{0}}\webleft (0\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}0\wedge 0,\\ \Delta ^{\wedge }_{S^{0}}\webleft (1\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}1\wedge 1, \end{align*}

      it follows that we indeed have $\Delta ^{\wedge }_{S^{0}}=\lambda ^{\mathsf{Sets}_{*},-1}_{S^{0}}$.

    This finishes the proof.

    Item 2: The Diagonal of the Unit
    This follows from Item 1 and the invertibility of the left/right unitor of $\mathsf{Sets}_{*}$ with respect to $\wedge $, proved in the proof of Definition 7.5.5.1.1 for the left unitor or the proof of Definition 7.5.6.1.1 for the right unitor.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: