10.1.1 Functional Relations

    Let $A$ and $B$ be sets.

    A relation $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ is functional if, for each $a\in A$, the set $R\webleft (a\webright )$ is either empty or a singleton.

    Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation.

    1. 1.

      Characterisations. The following conditions are equivalent:

      1. (a)

        The relation $R$ is functional.

  • (b)

    We have $R\mathbin {\diamond }R^{\dagger }\subset \chi _{B}$.

  • Item 1: Characterisations
    We claim that Item 1a and Item 1b are indeed equivalent:

    • Item 1a$\implies $Item 1b: Let $\webleft (b,b'\webright )\in B\times B$. We need to show that

      \[ \webleft [R\mathbin {\diamond }R^{\dagger }\webright ]\webleft (b,b'\webright )\preceq _{\{ \mathsf{t},\mathsf{f}\} }\chi _{B}\webleft (b,b'\webright ), \]

      i.e. that if there exists some $a\in A$ such that $b\sim _{R^{\dagger }}a$ and $a\sim _{R}b'$, then $b=b'$. But since $b\sim _{R^{\dagger }}a$ is the same as $a\sim _{R}b$, we have both $a\sim _{R}b$ and $a\sim _{R}b'$ at the same time, which implies $b=b'$ since $R$ is functional.

    • Item 1b$\implies $Item 1a: Suppose that we have $a\sim _{R}b$ and $a\sim _{R}b'$ for $b,b'\in B$. We claim that $b=b'$:

      • Since $a\sim _{R}b$, we have $b\sim _{R^{\dagger }}a$.

      • Since $R\mathbin {\diamond }R^{\dagger }\subset \chi _{B}$, we have

        \[ \webleft [R\mathbin {\diamond }R^{\dagger }\webright ]\webleft (b,b'\webright )\preceq _{\{ \mathsf{t},\mathsf{f}\} }\chi _{B}\webleft (b,b'\webright ), \]

        and since $b\sim _{R^{\dagger }}a$ and $a\sim _{R}b'$, it follows that $\webleft [R\mathbin {\diamond }R^{\dagger }\webright ]\webleft (b,b'\webright )=\mathsf{true}$, and thus $\chi _{B}\webleft (b,b'\webright )=\mathsf{true}$ as well, i.e. $b=b'$.

    This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: