10.2.2 The Reflexive Closure of a Relation

    Let $R$ be a relation on $A$.

    The reflexive closure of $\mathord {\sim }_{R}$ is the relation $\smash {\mathord {\sim }^{\mathrm{refl}}_{R}}$1 satisfying the following universal property:2

    • (★)
    • Given another reflexive relation $\mathord {\sim }_{S}$ on $A$ such that $R\subset S$, there exists an inclusion $\smash {\mathord {\sim }^{\mathrm{refl}}_{R}}\subset \mathord {\sim }_{S}$.


    1. 1Further Notation: Also written $R^{\mathrm{refl}}$.
    2. 2Slogan: The reflexive closure of $R$ is the smallest reflexive relation containing $R$.

    Concretely, $\smash {\mathord {\sim }^{\mathrm{refl}}_{R}}$ is the free pointed object on $R$ in $\webleft (\mathbf{Rel}\webleft (A,A\webright ),\chi _{A}\webright )$1, being given by

    \begin{align*} R^{\mathrm{refl}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R\mathbin {\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}^{\mathbf{Rel}\webleft (A,A\webright )}}\Delta _{A}\\ & = R\cup \Delta _{A}\\ & = \left\{ \webleft (a,b\webright )\in A\times A\ \middle |\ \text{we have $a\sim _{R}b$ or $a=b$}\right\} .\end{align*}


    1. 1Or, equivalently, the free $\mathbb {E}_{0}$-monoid on $R$ in $\webleft (\mathrm{N}_{\bullet }\webleft (\mathbf{Rel}\webleft (A,A\webright )\webright ),\chi _{A}\webright )$.

    Clear.

    Let $R$ be a relation on $A$.

    1. 1.

      Adjointness. We have an adjunction

      witnessed by a bijection of sets

      \[ \mathbf{Rel}^{\mathsf{refl}}\webleft (R^{\mathrm{refl}},S\webright ) \cong \mathbf{Rel}\webleft (R,S\webright ), \]

      natural in $R\in \operatorname {\mathrm{Obj}}\webleft (\mathbf{Rel}^{\mathsf{refl}}\webleft (A,A\webright )\webright )$ and $S\in \operatorname {\mathrm{Obj}}\webleft (\mathbf{Rel}\webleft (A,A\webright )\webright )$.

  • 2.

    The Reflexive Closure of a Reflexive Relation. If $R$ is reflexive, then $R^{\mathrm{refl}}=R$.

  • 3.

    Idempotency. We have

    \[ \webleft (R^{\mathrm{refl}}\webright )^{\mathrm{refl}} = R^{\mathrm{refl}}. \]
  • 4.

    Interaction With Inverses. We have

  • 5.

    Interaction With Composition. We have


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: