10.3.2 The Symmetric Closure of a Relation

    Let $R$ be a relation on $A$.

    The symmetric closure of $\mathord {\sim }_{R}$ is the relation $\smash {\mathord {\sim }^{\mathrm{symm}}_{R}}$1 satisfying the following universal property:2

    • (★)
    • Given another symmetric relation $\mathord {\sim }_{S}$ on $A$ such that $R\subset S$, there exists an inclusion $\smash {\mathord {\sim }^{\mathrm{symm}}_{R}}\subset \mathord {\sim }_{S}$.


    1. 1Further Notation: Also written $R^{\mathrm{symm}}$.
    2. 2Slogan: The symmetric closure of $R$ is the smallest symmetric relation containing $R$.

    Concretely, $\smash {\mathord {\sim }^{\mathrm{symm}}_{R}}$ is the symmetric relation on $A$ defined by

    \begin{align*} R^{\mathrm{symm}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R\cup R^{\dagger }\\ & = \left\{ \webleft (a,b\webright )\in A\times A\ \middle |\ \text{we have $a\sim _{R}b$ or $b\sim _{R}a$}\right\} .\end{align*}

    Clear.

    Let $R$ be a relation on $A$.

    1. 1.

      Adjointness. We have an adjunction

      witnessed by a bijection of sets

      \[ \mathbf{Rel}^{\mathsf{symm}}\webleft (R^{\mathrm{symm}},S\webright ) \cong \mathbf{Rel}\webleft (R,S\webright ), \]

      natural in $R\in \operatorname {\mathrm{Obj}}\webleft (\mathbf{Rel}^{\mathsf{symm}}\webleft (A,A\webright )\webright )$ and $S\in \operatorname {\mathrm{Obj}}\webleft (\mathbf{Rel}\webleft (A,A\webright )\webright )$.

    2. 2.

      The Symmetric Closure of a Symmetric Relation. If $R$ is symmetric, then $R^{\mathrm{symm}}=R$.

  • 3.

    Idempotency. We have

    \[ \webleft (R^{\mathrm{symm}}\webright )^{\mathrm{symm}} = R^{\mathrm{symm}}. \]
  • 4.

    Interaction With Inverses. We have

  • 5.

    Interaction With Composition. We have


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: