10.4.2 The Transitive Closure of a Relation

    Let $R$ be a relation on $A$.

    The transitive closure of $\mathord {\sim }_{R}$ is the relation $\smash {\mathord {\sim }^{\mathrm{trans}}_{R}}$1 satisfying the following universal property:2

    • (★)
    • Given another transitive relation $\mathord {\sim }_{S}$ on $A$ such that $R\subset S$, there exists an inclusion $\smash {\mathord {\sim }^{\mathrm{trans}}_{R}}\subset \mathord {\sim }_{S}$.


    1. 1Further Notation: Also written $R^{\mathrm{trans}}$.
    2. 2Slogan: The transitive closure of $R$ is the smallest transitive relation containing $R$.

    Concretely, $\smash {\mathord {\sim }^{\mathrm{trans}}_{R}}$ is the free non-unital monoid on $R$ in $\webleft (\mathbf{Rel}\webleft (A,A\webright ),\mathbin {\diamond }\webright )$1, being given by

    \begin{align*} R^{\mathrm{trans}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\coprod _{n=1}^{\infty }R^{\mathbin {\diamond }n}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{n=1}^{\infty }R^{\mathbin {\diamond }n}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \webleft (a,b\webright )\in A\times B\ \middle |\ \begin{aligned} & \text{there exists some $\webleft (x_{1},\ldots ,x_{n}\webright )\in R^{\times n}$}\\ & \text{such that $a\sim _{R}x_{1}\sim _{R}\cdots \sim _{R}x_{n}\sim _{R}b$}\end{aligned} \right\} .\end{align*}


    1. 1Or, equivalently, the free non-unital $\mathbb {E}_{1}$-monoid on $R$ in $\webleft (\mathrm{N}_{\bullet }\webleft (\mathbf{Rel}\webleft (A,A\webright )\webright ),\mathbin {\diamond }\webright )$.

    Clear.

    Let $R$ be a relation on $A$.

    1. 1.

      Adjointness. We have an adjunction

      witnessed by a bijection of sets

      \[ \mathbf{Rel}^{\mathsf{trans}}\webleft (R^{\mathrm{trans}},S\webright ) \cong \mathbf{Rel}\webleft (R,S\webright ), \]

      natural in $R\in \operatorname {\mathrm{Obj}}\webleft (\mathbf{Rel}^{\mathsf{trans}}\webleft (A,A\webright )\webright )$ and $S\in \operatorname {\mathrm{Obj}}\webleft (\mathbf{Rel}\webleft (A,B\webright )\webright )$.

    2. 2.

      The Transitive Closure of a Transitive Relation. If $R$ is transitive, then $R^{\mathrm{trans}}=R$.

  • 3.

    Idempotency. We have

    \[ \webleft (R^{\mathrm{trans}}\webright )^{\mathrm{trans}} = R^{\mathrm{trans}}. \]
  • 4.

    Interaction With Inverses. We have

  • 5.

    Interaction With Composition. We have

  • Item 1: Adjointness
    This is a rephrasing of the universal property of the transitive closure of a relation, stated in Definition 10.4.2.1.1.

    Item 2: The Transitive Closure of a Transitive Relation
    Clear.

    Item 3: Idempotency
    This follows from Item 2.

    Item 4: Interaction With Inverses
    We have

    \begin{align*} \webleft (R^{\dagger }\webright )^{\mathrm{trans}} & = \bigcup _{n=1}^{\infty }\webleft (R^{\dagger }\webright )^{\mathbin {\diamond }n}\\ & = \bigcup _{n=1}^{\infty }\webleft (R^{\mathbin {\diamond }n}\webright )^{\dagger }\\ & = \webleft (\bigcup _{n=1}^{\infty }R^{\mathbin {\diamond }n}\webright )^{\dagger }\\ & = \webleft (R^{\mathrm{trans}}\webright )^{\dagger }, \end{align*}

    where we have used, respectively:

    This finishes the proof.

    Item 5: Interaction With Composition
    This follows from Item 2 of Proposition 10.4.1.1.4.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: