A relation $R$ is an equivalence relation if it is reflexive, symmetric, and transitive.1
- 1Further Terminology: If instead $R$ is just symmetric and transitive, then it is called a partial equivalence relation.
Let $A$ be a set.
A relation $R$ is an equivalence relation if it is reflexive, symmetric, and transitive.1
The kernel of a function $f\colon A\to B$ is the equivalence relation $\mathord {\sim }_{\mathrm{Ker}\webleft (f\webright )}$ on $A$ obtained by declaring $a\sim _{\mathrm{Ker}\webleft (f\webright )}b$ iff $f\webleft (a\webright )=f\webleft (b\webright )$.1
Let $A$ and $B$ be sets.
The set of equivalence relations from $A$ to $B$ is the subset $\smash {\mathrm{Rel}^{\mathrm{eq}}\webleft (A,B\webright )}$ of $\mathrm{Rel}\webleft (A,B\webright )$ spanned by the equivalence relations.
The poset of relations from $A$ to $B$ is is the subposet $\smash {\mathbf{Rel}^{\operatorname {\mathrm{eq}}}\webleft (A,B\webright )}$ of $\mathbf{Rel}\webleft (A,B\webright )$ spanned by the equivalence relations.