A $1$-morphism $f\colon A\to B$ of $\mathcal{C}$ is representably fully faithful on cores if the following equivalent conditions are satisfied:
-
1.
The $1$-morphism $f$ is representably faithful on cores (Definition 14.1.5.1.1) and representably full on cores (Definition 14.1.4.1.1).
-
2.
For each $X\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, the functor
\[ f_{*}\colon \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,A))\to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,B)) \]given by postcomposition by $f$ is fully faithful.