A $1$-morphism $f\colon A\to B$ of $\mathcal{C}$ is pseudomonic if, for each $X\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, the functor
given by postcomposition by $f$ is pseudomonic.
Let $\mathcal{C}$ be a bicategory.
A $1$-morphism $f\colon A\to B$ of $\mathcal{C}$ is pseudomonic if, for each $X\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, the functor
given by postcomposition by $f$ is pseudomonic.
In detail, a $1$-morphism $f\colon A\to B$ of $\mathcal{C}$ is pseudomonic if it satisfies the following conditions:
For all diagrams in $\mathcal{C}$ of the form
then $\alpha =\beta $.
For each $X\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$ and each $2$-isomorphism
Let $f\colon A\to B$ be a $1$-morphism of $\mathcal{C}$.