A $1$-morphism $f\colon A\to B$ of $\mathcal{C}$ is corepresentably fully faithful on cores if the following equivalent conditions are satisfied:
-
1.
The $1$-morphism $f$ is corepresentably full on cores (Definition 14.2.5.1.1) and corepresentably faithful on cores (Definition 14.2.1.1.1).
-
2.
For each $X\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, the functor
\[ f^{*}\colon \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(B,X))\to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(A,X)) \]given by precomposition by $f$ is fully faithful.