Set Theory:
Type Theory:
Pointed sets:
-
1.
Universal property of the smash product of pointed sets:
-
(a)
Record the weaker version of Chapter 7: Tensor Products of Pointed Sets,
saying that $\wedge $ is uniquely determined by those requirements:
-
(b)
Study the “moduli category” of monoidal structures on $\mathsf{Sets}_{*}$ having $\wedge $ and $S^{0}$; is it contractible?
-
(a)
-
2.
Universal properties (plural!) of the left tensor product of pointed sets
-
3.
Universal properties (plural!) of the right tensor product of pointed sets
Spans:
- 1.
-
2.
Spans: study certain compositions of spans like composing $B\xleftarrow {f}A=A$ and $A=A\xleftarrow {g}B$ into a span $B\xleftarrow {f}A\xleftarrow {g}B$
-
3.
Comparison double functor from Span to Rel and vice versa
-
4.
Apartness composition for spans and alternate compositions for spans in general
-
5.
non-Cartesian analogue of spans
-
(a)
View spans as morphisms $S\to A\times B$ and consider instead morphisms $S\to A\otimes _{\mathcal{C}}B$
-
(a)
-
6.
Record the universal property of the bicategory of spans of
- 7.
-
8.
Cospans.
-
9.
Multispans.
Un/Straightening for Indexed and Fibred Sets:
-
1.
Analogue of adjoints for Grothendieck construction for indexed and fibred sets
-
2.
Write proper sections on straightening for lax functors from Sets to Rel or Span (displayed sets)
-
3.
co/units for un/straightening adjunction
Categories:
-
1.
,
- 2.
- 3.
-
4.
From Keith: Presheaves on a topological space $X$ valued in $\{ \mathsf{t},\mathsf{f}\} $
- 5.
-
6.
Notion of equality that is weaker than equivalence but stronger than adjunction
-
7.
Tangent categories, Beck modules, categorical derivations
-
8.
Flat functors
-
9.
Is the classifying space of a category isomorphic to $\mathrm{Ex}^{\infty }$ of the nerve of the category? If so, an intuition for having an initial/terminal object implying being homotopically contractible is that taking the free $\infty $-groupoid generated by that identifies every object with the terminal one.
- 10.
-
11.
simple objects
- 12.
-
13.
Polynomial functors, ,
- 14.
- 15.
- 16.
- 17.
-
18.
Posetal category associated to a poset as a right adjoint
-
19.
“Presetal category” associated to a preordered set
-
20.
Vopenka’s principle simplifies stuff in the theory of locally presentable categories. If we build categories using type theory or HoTT, what stuff from vopenka holds?
-
21.
Are pseudoepic functors those functors whose restricted Yoneda embedding is pseudomonic and Yoneda preserves absolute colimits?
-
22.
Absolutely dense functors enriched over $\mathbb {R}^{+}$ apparently reduce to topological density
-
23.
Is there a reasonable notion of category homology? It is very common for the geometric realisation of a category to be contractible (e.g. having an initial or terminal object), but maybe some notion of directed homology could work here
-
24.
Nerves of categories:
-
25.
Define contractible categories and add a discussion of universal properties as stating that certain categories are contractible. (Example of non-unique isomorphisms as e.g. being a group of order $5$ corresponds to all objects being isomorphic but the category not being contractible)
- 26.
-
27.
Sections and retractions; retracts, .
-
28.
Groupoid cardinality
-
29.
combinatorial species
-
30.
Leinster’s the eventual image,
-
(a)
Telescope notation $\mathrm{tel}_{\phi }\webleft (X\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname*{\operatorname {\mathrm{colim}}}\webleft (X\xrightarrow {\phi }X\xrightarrow {\phi }\xrightarrow {\phi }\cdots \webright )$ introduced in
-
(a)
- 31.
-
32.
Dagger categories:
Regular Categories:
Types of Morphisms in Categories:
-
1.
for motivation of monomorphisms/epimorphisms
-
2.
Characterisation of epimorphisms in the category of fields,
-
3.
Strong epimorphisms
-
4.
Behaviour in $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$, e.g. pointwise sections vs. sections in $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$.
-
5.
Faithful functors from balanced categories are conservative
-
6.
Natural cotransformations:
-
(a)
If there is a natural transformation between functors between categories, taking nerves gives a homotopy equivalence (or something like that). What happens for natural cotransformations?
-
(b)
Natural transformations come with a vertical composition map
\[ \circ \colon \coprod _{G\in \mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )}\operatorname {\mathrm{Nat}}\webleft (G,H\webright )\times \operatorname {\mathrm{Nat}}\webleft (F,G\webright )\to \operatorname {\mathrm{Nat}}\webleft (F,H\webright ). \]As Morgan Rogers shows here, there’s no vertical cocomposition map of the form
\[ \operatorname {\mathrm{CoNat}}\webleft (F,H\webright )\to \prod _{G\in \mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )}\operatorname {\mathrm{CoNat}}\webleft (G,H\webright )\times \operatorname {\mathrm{CoNat}}\webleft (F,G\webright ) \]or of the form
\[ \operatorname {\mathrm{CoNat}}\webleft (F,H\webright )\to \prod _{G\in \mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )}\operatorname {\mathrm{CoNat}}\webleft (G,H\webright )\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\operatorname {\mathrm{CoNat}}\webleft (F,G\webright ) \]for natural cotransformations.
-
(c)
Cap product for CoNat and Nat
-
(i)
recovers map $\mathrm{Z}\webleft (G\webright )\times \mathrm{Cl}\webleft (G\webright )\to \mathrm{Cl}\webleft (G\webright )$.
-
(i)
-
(d)
What is the geometric realisation of $\mathrm{CoTrans}\webleft (F,G\webright )$?
-
(i)
Related:
-
(i)
-
(e)
What is the totalisation of $\mathrm{Trans}\webleft (F,G\webright )$?
-
(i)
If we view sets as discrete topological spaces, what are the homotopy/homology groups of it? The nLab says this ():
The homotopy groups of the totalization of a cosimplicial space are computed by a Bousfield-Kan spectral sequence.
The homology groups by an Eilenberg-Moore spectral sequence.
-
(i)
-
(f)
Abstract
-
(a)
Adjunctions:
-
1.
Relative adjunctions: message Alyssa asking for her notes
-
2.
Adjunctions, units, counits, and fully faithfulness as in .
-
3.
Morphisms between adjunctions and bicategory $\mathsf{Adj}\webleft (\mathcal{C}\webright )$.
- 4.
Presheaves and the Yoneda Lemma:
-
1.
Yoneda extension along ${\text{よ}}_{\mathcal{D}}\circ F\colon \mathcal{C}\to \mathsf{PSh}\webleft (\mathcal{D}\webright )$, giving a functor left adjoint to the precomposition functor $F^{*}\colon \mathsf{PSh}\webleft (\mathcal{D}\webright )\to \mathsf{PSh}\webleft (\mathcal{C}\webright )$.
-
2.
Consider the diagram
-
3.
Does the functor tensor product admit a right adjoint (“Hom”) in some sense?
-
4.
Yoneda embedding preserves limits
-
5.
universal objects and universal elements
-
6.
adjoints to the Yoneda embedding and total categories
-
7.
The co-Yoneda lemma: co/presheaves are colimits of co/representables
-
8.
Properties of categories of copresheaves
-
9.
Contravariant restricted Yoneda embedding
-
10.
Contravariant Yoneda extensions
-
11.
Make table of $\operatorname {\mathrm{Lift}}_{{\text{よ}}}\webleft ({\text{よ}}\webright )$, $\operatorname {\mathrm{Ran}}_{{\text{よ}}}\webleft ({\text{よ}}\webright )$, $\operatorname {\mathrm{Ran}}_{{\text{よ}}}\webleft (\style {display: inline-block; transform: rotate(180deg)}{よ}\mkern -2.5mu\webright )$, etc.
-
12.
Properties of restricted Yoneda embedding, e.g. if the restricted Yoneda embedding is full, then what can we conclude? Related:
-
13.
Tensor product of functors and relation to profunctors
-
14.
rifts and rans and lifts and lans involving yoneda in $\mathsf{Cats}$ and $\mathsf{Prof}$
-
15.
Tensor product of functors and relation to rifts and rans of profunctors
Isbell Duality:
-
1.
enriched Isbell over walking chain complex
-
2.
Isbell self-dual presheaves for Lawvere metric spaces; when
\[ f\webleft (x\webright )=\sup _{x\in X}\webleft (\left\lvert f\webleft (x\webright )-\sup _{y\in X}\webleft (\left\lvert f\webleft (y\webright )-\mathrm{d}_{X}\webleft (y,x\webright )\right\rvert \webright )\right\rvert \webright ) \]holds.
- 3.
- 4.
- 5.
- 6.
- 7.
-
8.
Important: I should reconsider going with the notation $\mathsf{O}$ and $\mathsf{Spec}$. Although a bit common in the (somewhat scarce) literature on Isbell duality, I have doubts regarding how useful/nice of a choice $\mathsf{O}$ and $\mathsf{Spec}$ are, and whether there are better choices of notation for them.
-
9.
Interaction with $\times $, $\operatorname {\mathrm{Hom}}$, $F_{!}$, $F^{*}$, and $F_{*}$
-
10.
Interactions between presheaves and copresheaves:
-
11.
Isbell duality for monoids:
-
(a)
Set up a dictionary between properties of $\mathsf{Sets}^{\mathrm{L}}_{A}$ or $\mathsf{Sets}^{\mathrm{R}}_{A}$ and properties of $A$
-
(b)
Do the same for $\mathsf{O}$ given by $A\mapsto \mathsf{Sets}^{\mathrm{L}}_{A}\webleft (X,A\webright )$
-
(c)
Do the same for $\mathsf{Spec}$ given by $A\mapsto \mathsf{Sets}^{\mathrm{R}}_{A}\webleft (X,A\webright )$
-
(d)
Do the same for $\mathsf{O}\circ \mathsf{Spec}$
-
(e)
Do the same for $\mathsf{Spec}\circ \mathsf{O}$
-
(f)
Algebras for $\mathsf{Spec}\circ \mathsf{O}$
-
(g)
Coalgebras for $\mathsf{O}\circ \mathsf{Spec}$
-
(a)
-
12.
Properties of $\mathsf{Spec}$ (e.g. fully faithfulness) vs. properties of $\mathcal{C}$
-
13.
Properties of $\mathsf{O}$ (e.g. fully faithfulness) vs. properties of $\mathcal{C}$
-
14.
co/unit being monomorphism/epimorphism
-
15.
reflexive completion
-
16.
Isbell duality for simplicial sets; what’s the reflexive completion?
-
17.
Isbell envelope
-
18.
What does Isbell duality look like, when Cat(Aop,Set) is identified with the category of discrete opfibrations over A, using A.5.14?
-
19.
Generalizations of Isbell duality:
-
(a)
Monoidal Isbell duality: monoidality for Isbell adjunction with day convolution (6.3 of coend cofriend)
-
(b)
Isbell duality with sheaves
-
(c)
Isbell duality with Lawvere theories, product preserving functors or whatever
-
(d)
Isbell duality for profunctors
- (i)
-
(ii)
Right Kan lift/extension of Hom functors (there’s probably a version of the Yoneda lemma here)
-
(I)
What is $\operatorname {\mathrm{Rift}}_{F}\webleft (\operatorname {\mathrm{Hom}}_{\mathcal{C}}\webright )$
-
(II)
What is $\operatorname {\mathrm{Ran}}_{F}\webleft (\operatorname {\mathrm{Hom}}_{\mathcal{C}}\webright )$
-
(III)
What is $\operatorname {\mathrm{Rift}}_{\operatorname {\mathrm{Hom}}_{\mathcal{C}}}\webleft (F\webright )$
-
(IV)
What is $\operatorname {\mathrm{Ran}}_{\operatorname {\mathrm{Hom}}_{\mathcal{C}}}\webleft (F\webright )$
-
(V)
What is $\operatorname {\mathrm{Lift}}_{F}\webleft (\operatorname {\mathrm{Hom}}_{\mathcal{C}}\webright )$
-
(VI)
What is $\operatorname {\mathrm{Lan}}_{F}\webleft (\operatorname {\mathrm{Hom}}_{\mathcal{C}}\webright )$
-
(VII)
What is $\operatorname {\mathrm{Lift}}_{\operatorname {\mathrm{Hom}}_{\mathcal{C}}}\webleft (F\webright )$
-
(VIII)
What is $\operatorname {\mathrm{Lan}}_{\operatorname {\mathrm{Hom}}_{\mathcal{C}}}\webleft (F\webright )$
-
(I)
-
(a)
-
20.
Tensor product of functors and Isbell duality
-
(a)
What is $\mathcal{F}\boxtimes _{\mathcal{C}}\mathsf{O}\webleft (\mathcal{F}\webright )$?
-
(b)
What is $\mathsf{Spec}\webleft (F\webright )\boxtimes _{\mathcal{C}}F$?
-
(c)
I think there is a canonical morphism
\[ \mathcal{F}\boxtimes _{\mathcal{C}}\mathsf{O}\webleft (\mathcal{F}\webright )\to \mathrm{Tr}\webleft (\mathcal{C}\webright ). \]By the way, what is $\mathrm{Tr}\webleft (\mathbb {\Delta }\webright )$? What is $\mathrm{Tr}\webleft (\mathsf{B}{A}\webright )$? What about $\operatorname {\mathrm{Nat}}\webleft (\operatorname {\mathrm{id}}_{\mathcal{C}},\operatorname {\mathrm{id}}_{\mathcal{C}}\webright )$ for $\mathcal{C}=\mathsf{B}{A}$ or $\mathcal{C}=\mathbb {\Delta }$
-
(a)
-
21.
Isbell with coends:
-
22.
Co/limit preservation for O/Spec
-
23.
Isbell duality for N vs. N + N
-
24.
What do we get if we replace $\mathsf{O}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{Nat}}\webleft (-,h_{X}\webright )$ by $\operatorname {\mathrm{Nat}}^{\webleft [W\webright ]}\webleft (-,h_{X}\webright )$, and in particular by $\operatorname {\mathrm{DiNat}}\webleft (-,h_{X}\webright )$?
Species:
-
1.
Joyal–Street’s $q$-species; via promonoidal structures
-
2.
associators, braidings, unitors; $\mathbb {F}^{n}_{q}\to \mathbb {F}^{n}_{q}$ centre of $\mathrm{GL}_{n}\webleft (\mathbb {F}_{q}\webright )$ trick
-
3.
group completion of $\mathcal{GL}\webleft (\mathbb {F}_{q}\webright )$ as algebraic k-theory
Constructions With Categories:
- 1.
-
2.
Comparison between pseudopullbacks and isocomma categories: the “evident” functor $\mathcal{C}\times ^{\mathsf{ps}}_{\mathcal{E}}\mathcal{D}\to \mathcal{C}\mathbin {\overset {\leftrightarrow }{\times }}_{\mathcal{E}}\mathcal{D}$ is essentially surjective and full, but not faithful in general.
-
3.
Quotients of categories by actions of monoidal categories
-
(a)
Quotients of categories by actions of monoids $\mathsf{B}{A}$
-
(b)
Quotients of categories by actions of monoids $A_{\mathsf{disc}}$
-
(c)
Lax, oplax, pseudo, strict, etc. quotients of categories
-
(d)
lax Kan extensions along $\mathsf{B}{\mathcal{C}}\to \mathsf{B}{\mathcal{D}}$ for $\mathcal{C}\to \mathcal{D}$ a monoidal functor
-
(a)
-
4.
Quotient of $\mathsf{Fun}\webleft (\mathsf{B}{A},\mathcal{C}\webright )$ by the $A$-action.
-
5.
$\mathsf{Fun}\webleft (\mathsf{B}\mathbb {N},\mathcal{C}\webright )$ as a homotopy pullback in $\mathsf{Cats}_{\mathsf{2}}$
Limits and colimits:
-
1.
adjunction between co/product and diagonal; abstract version of
and
-
2.
Examples of kan extensions along functors of the form $\mathsf{FinSets}\hookrightarrow \mathsf{Sets}$
-
3.
Initial/terminal objects as left/right adjoints to $!_{\mathcal{C}}\colon \mathcal{C}\to \mathsf{pt}$.
-
4.
A small cocomplete category is a poset,
-
5.
Co/limits in $\mathsf{B}{A}$, including e.g. co/equalisers in $\mathsf{B}{A}$
-
6.
Add the characterisations of absolutely dense functors given in
to
.
-
7.
Absolutely dense functors, . Also theorem 1.1 here: .
-
8.
Dense functors, codense functors, and absolutely codense functors.
-
9.
van kampen colimits
Completions and cocompletions:
- 1.
-
2.
what is the conservative cocompletion of smooth manifolds? Is it related to diffeological spaces?
-
3.
what is the conservative completion of smooth manifolds? Is it related to diffeological spaces?
-
4.
what is the conservative bicompletion of smooth manifolds? Is it related to diffeological spaces?
-
5.
completion of a category under exponentials
- 6.
-
7.
The free cocompletion of a category;
-
8.
The free completion of a category;
-
9.
The free completion under finite products;
-
10.
The free cocompletion under finite coproducts;
-
11.
The free bicompletion of a category;
-
12.
The free bicompletion of a category under nonempty products and nonempty coproducts ();
-
13.
Cauchy completions
-
14.
Dedekind–MacNeille completions
-
15.
Isbell completion ()
-
16.
Isbell envelope
Ends and Coends:
-
1.
motivate co/ends as co/limits of profunctors
-
2.
Ask Fosco about whether composition of dinatural transformations into higher dinaturals could be useful for https://arxiv.org/abs/2409.10237
-
3.
Cyclic co/ends
-
(a)
Try to mimic the construction given in Haugseng for the cycle, paracycle, cube, etc. categories
-
(b)
cyclotomic stuff for cyclic co/ends
-
(i)
Check out Ayala–Mazel-Gee–Rozenblyum’s Symmetries of the cyclic nerve
-
(ii)
isogenetic $\mathbb {N}^{\times }$-action (what the fuck does this mean?)
-
(i)
-
(a)
-
4.
After stating the co/ends
\[ \begin{aligned} \int ^{A\in \mathcal{C}}h_{A}\odot \mathcal{F}^{A},\\ \int ^{A\in \mathcal{C}}h^{A}\odot F_{A}, \end{aligned} \qquad \begin{aligned} \int _{A\in \mathcal{C}}\mathsf{Sets}\webleft (h_{A},\mathcal{F}^{A}\webright ),\\ \int _{A\in \mathcal{C}}\mathsf{Sets}\webleft (h^{A},F_{A}\webright ) \end{aligned} \]in the co/end version of the Yoneda lemma, add a remark explaining what the co/ends
\[ \begin{aligned} \int _{A\in \mathcal{C}}h_{A}\odot \mathcal{F}^{A},\\ \int _{A\in \mathcal{C}}h^{A}\odot F_{A}, \end{aligned} \qquad \begin{aligned} \int ^{A\in \mathcal{C}}\mathsf{Sets}\webleft (h_{A},\mathcal{F}^{A}\webright ),\\ \int ^{A\in \mathcal{C}}\mathsf{Sets}\webleft (h^{A},F_{A}\webright ) \end{aligned} \]and the co/ends
\[ \begin{aligned} \int ^{A\in \mathcal{C}}\mathcal{F}^{A}\odot h_{A},\\ \int ^{A\in \mathcal{C}}F_{A}\odot h^{A},\\ \int _{A\in \mathcal{C}}\mathcal{F}^{A}\odot h_{A},\\ \int _{A\in \mathcal{C}}F_{A}\odot h^{A},\\ \end{aligned} \qquad \begin{aligned} \int _{A\in \mathcal{C}}\mathsf{Sets}\webleft (\mathcal{F}^{A},h_{A}\webright ),\\ \int _{A\in \mathcal{C}}\mathsf{Sets}\webleft (F_{A},h^{A}\webright ),\\ \int ^{A\in \mathcal{C}}\mathsf{Sets}\webleft (\mathcal{F}^{A},h_{A}\webright ),\\ \int ^{A\in \mathcal{C}}\mathsf{Sets}\webleft (F_{A},h^{A}\webright ) \end{aligned} \]are.
-
5.
ends $\mathcal{C}\to \mathcal{D}$ with $\odot $ is a special case of ends for a certain enrichment over $\mathcal{D}$
-
6.
try to figure out what the end/coend
\[ \int ^{X\in \mathcal{C}}h^{A}_{X}\times h^{X}_{B},\qquad \int _{X\in \mathcal{C}}h^{A}_{X}\times h^{X}_{B} \]are for $\mathcal{C}=\mathsf{B}{A}$. (I think the coend is like tensor product of $A$ as a left $A$-set with it as a right $A$-set)
-
7.
Cyclic ends
-
8.
Dihedral ends
-
9.
Does Haugseng’s constructions give a way to define cyclic co/homology with coefficients in a bimodule?
-
10.
Category of elements of dinatural transformation classifier
-
11.
Examples of co/ends:
-
12.
Cofinality for co/ends,
-
13.
“Fourier transforms” as in or
Weighted/diagonal category theory:
-
1.
co/ends as centre/trace-infused co/limits: compare the co/end of $\operatorname {\mathrm{Hom}}_{\mathcal{C}}$ with the co/limit of $\operatorname {\mathrm{Hom}}_{\mathcal{C}}$
-
2.
Codensity $W$-weighted monads, $\operatorname {\mathrm{Ran}}^{\webleft [W\webright ]}_{F}\webleft (F\webright )$;
-
3.
Codensity diagonal monads, $\mathrm{DiRan}_{F}\webleft (F\webright )$;
Profunctors:
-
1.
Apartness defines a composition for relations, but its analogue
\[ \mathfrak {q}\mathbin {\square }\mathfrak {p}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\int _{A\in \mathcal{C}}\mathfrak {p}^{-_{1}}_{A}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\mathfrak {q}^{A}_{-_{2}} \]fails to be unital for profunctors with the unit $h^{A}_{-}$. Is it unital for some other unit? Is there a less obvious analogue of apartness composition for profunctors? Or maybe does $\mathsf{Prof}$ equipped with $\square $ and units $h^{A}_{-}$ form a skew bicategory?
Is $\Delta _{\text{Ø}}$ a unit?
-
2.
Figure what monoidal category structures on $\mathsf{Sets}$ induce associative and unital compositions on $\mathsf{Prof}$.
- 3.
-
4.
Different compositions for profunctors from monoidal structures on the category of sets (e.g. )
-
5.
Nucleus of a profunctor;
-
6.
Isbell duality for profunctors:
Centres and Traces of Categories:
-
1.
$\mathrm{K}_{0}\webleft (\mathsf{Fun}\webleft (\mathsf{B}\mathbb {N},\mathcal{C}\webright )\webright )$ vs. $\pi _{0}\webleft (\mathsf{Fun}\webleft (\mathsf{B}\mathbb {N},\mathcal{C}\webright )\webright )$ vs. $\mathrm{Tr}\webleft (\mathcal{C}\webright )$, and how these are generalisations of conjugacy classes for monoids
-
2.
Explicitly work out the trace and $\pi _{0}\mathsf{Fun}\webleft (\mathsf{B}\mathbb {N},-\webright )$ for monoids with few elements.
-
3.
$\webleft [1_{A}\webright ]$ can contain more than one element. An example is $\mathsf{Sets}\webleft (\mathbb {N},\mathbb {N}\webright )$ and the maps given by
\begin{align*} \left\{ 0,1,2,3,\ldots \right\} & \mapsto \left\{ 0,0,1,2,\ldots \right\} ,\\ \left\{ 0,1,2,3,\ldots \right\} & \mapsto \left\{ 2,3,4,5,\ldots \right\} . \end{align*}Show also that if $c\in \webleft [1_{A}\webright ]$, then $c$ is idempotent.
-
4.
Drinfeld centre
-
5.
trace of the symmetric simplex category; it’s probably different from that of $\mathsf{FinSets}$
-
6.
Trace of $\mathsf{Rep}_{G}$ and interaction with induction, restriction, etc.
-
7.
$\pi _{0}\webleft (\mathsf{B}\mathbb {N},\mathsf{B}{A}\webright )$, $K\webleft (\mathsf{B}\mathbb {N},\mathsf{B}{A}\webright )$, and $\mathrm{Tr}\webleft (\mathsf{B}\mathbb {N},\mathsf{B}{A}\webright )$ as concepts of conjugacy for monoids, their equivalents for categories, and comparison with traces
-
8.
Comparison between $\pi _{0}\webleft (\mathsf{Fun}\webleft (\mathsf{B}\mathbb {N},\mathcal{C}\webright )\webright )$ and $K\webleft (\mathsf{Fun}\webleft (\mathsf{B}\mathbb {N},\mathcal{C}\webright )\webright )$
-
9.
Lax, oplax, pseudo, and strict trace of simplex 2-category
-
10.
duality over $\Gamma $ might give a map from product of a monoid with a set to $\mathrm{Tr}\webleft (\Gamma \webright )$
-
11.
Studying the set $\operatorname {\mathrm{Nat}}\webleft (\operatorname {\mathrm{id}}_{\mathcal{C}},F\webright )$ as a notion of categorical trace:
-
(a)
Ganter–Kapranov define the trace of a $1$-endomorphism $f\colon A\to A$ in a $2$-category $\mathcal{C}$ to be the set $\operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (\operatorname {\mathrm{id}}_{A},f\webright )$;
We should study this notion in detail, and also study $\operatorname {\mathrm{Nat}}\webleft (F,\operatorname {\mathrm{id}}_{\mathcal{C}}\webright )$ as well as $\operatorname {\mathrm{CoNat}}\webleft (\operatorname {\mathrm{id}}_{\mathcal{C}},F\webright )$ and $\operatorname {\mathrm{CoNat}}\webleft (F,\operatorname {\mathrm{id}}_{\mathcal{C}}\webright )$.
-
(a)
-
12.
Centre of bicategories
-
13.
Lax centres and lax traces
-
14.
Examples of traces:
-
(a)
Discrete categories
-
(b)
Posets
-
(i)
$\mathsf{Open}\webleft (X\webright )$
-
(i)
-
(c)
Trace of small but non-finite categories:
-
(i)
$\mathsf{Sets}$
-
(ii)
$\mathsf{Rep}\webleft (G\webright )$
-
(iii)
category of finite groups
-
(iv)
category of finite abelian groups
-
(v)
category of finite $p$-groups for fixed $p$
-
(vi)
category of finite $p$-groups for all $p$
-
(vii)
category of finite fields
-
(viii)
category of finite topological spaces
-
(ix)
category of finite [insert a mathematical object here]
-
(i)
-
(a)
-
15.
When is the trace of a groupoid just the disjoint sum of sets of conjugacy classes?
-
16.
Set-theoretical issues when defining traces
-
(a)
Sets is a large category, and yet we can speak of its centre
\begin{align*} \mathrm{Z}\webleft (\mathsf{Sets}\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\int _{A\in \mathsf{Sets}}\mathsf{Sets}\webleft (X,X\webright )\\ & \cong \operatorname {\mathrm{Nat}}\webleft (\operatorname {\mathrm{id}}_{\mathsf{Sets}},\operatorname {\mathrm{id}}_{\mathsf{Sets}}\webright )\\ & \cong \mathrm{pt}. \end{align*}Is there a way to do the same for the trace of sets, or otherwise work with traces of large categories?
-
(a)
-
17.
Understand how traces are defined via universal properties in Xinwen Zhu’s Geometric Satake, categorical traces, and arithmetic of Shimura varieties.
-
18.
trace as an $\operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$-indexed set
-
(a)
properties, functoriality, etc.
-
(a)
-
19.
Maybe actually call $\mathsf{Fun}\webleft (\mathsf{B}\mathbb {N},\mathcal{C}\webright )$ the categorical directed loop space of $\mathcal{C}$?
-
20.
Cyclic version of $\mathsf{Fun}\webleft (\mathsf{B}\mathbb {N},\mathcal{C}\webright )$
-
21.
Traces of categories, nerves of categories, and the cycle category
Categorical Hochschild Homology:
-
1.
To any functor we have an associated natural transformation (
). Do we have sharp transformations associated to natural transformation?
-
2.
build Hochschild co/simplicial set and study its homotopy groups
-
3.
$\mathsf{Fun}\webleft (\mathsf{B}\mathbb {N},X_{\bullet }\webright )$ vs. $\mathsf{Fun}\webleft (\Delta ^{1}/\partial \Delta ^{1},X_{\bullet }\webright )$
-
(a)
Their $\pi _{0}$’s vs. the $\pi _{0}$’s of $\operatorname {\mathrm{Hom}}_{X_{\bullet }}\webleft (x,x\webright )$, of $\operatorname {\mathrm{Hom}}^{\mathrm{L}}_{X_{\bullet }}\webleft (x,x\webright )$, and $\operatorname {\mathrm{Hom}}^{\mathrm{R}}_{X_{\bullet }}\webleft (x,x\webright )$.
-
(a)
Monoidal Categories:
- 1.
-
2.
Analogue of Picard rings for dualisable objects
-
3.
Moduli of associators, braidings, etc. for species, $q$-species
-
4.
When is the left Kan extension along a fully faithful functor of monoidal categories a strong monoidal functor?
-
5.
Interaction between Day convolution and Isbell duality
-
6.
general theory for lifting pseudomonads from Cat to Prof along the equipment embedding
-
7.
definition of prostrength on a functor between promonoidal categories, differential 2-rigs fosco
-
8.
Promonoidal structure in
-
9.
Day convolution as a colimit over category of factorizations $F\webleft (A\webright )\otimes _{\mathcal{C}}G\webleft (B\webright )\to V$
-
10.
Day convolution with respect to Cartesian monoidal structure is Cartesian monoidal. There’s an easy proof of this with coend Yoneda
- 11.
- 12.
- 13.
-
14.
Does the forgetful functor ${\text{忘}}\colon \mathsf{IdemMon}\webleft (\mathcal{C}\webright )\to \mathsf{Mon}\webleft (\mathcal{C}\webright )$ admit a left adjoint? What about ${\text{忘}}\colon \mathsf{IdemMon}\webleft (\mathcal{C}\webright )\to \mathcal{C}$?
-
15.
Clifford algebras in monoidal categories
-
16.
Exterior algebras in monoidal categories
-
17.
Different monoidal products in $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{C}\webright )$ and their distributivity
-
18.
Classification of monoidal structures on $\mathbb {\Delta }$
-
19.
Classification of monoidal structures on $\Lambda $
-
20.
Tensor Categories, 8.5.4
- 21.
- 22.
-
23.
Para construction
-
24.
Drinfeld center; Symmetric center; JY’s books on bimonoidal categories
-
25.
Picard and Brauer 2-groups
-
(a)
Differential Picard and Brauer Groups via $\mathsf{Fun}\webleft (\mathsf{B}\mathbb {N},\mathsf{Mod}_{R}\webright )$.
-
(b)
Brauer and Picard groups of $\webleft (\mathsf{Fun}\webleft (\mathcal{C},\mathcal{C}\webright ),\circ ,\operatorname {\mathrm{id}}_{\mathcal{C}}\webright )$
-
(c)
Brauer and Picard groups of $\mathsf{Rep}\webleft (G\webright )$
-
(d)
Brauer and Picard groups of $\mathsf{Sets}$
-
(e)
Brauer and Picard groups of $\mathsf{Ch}_{\mathbb {Z}}\webleft (R\webright )$
-
(f)
Brauer and Picard groups of $\mathsf{Shv}\webleft (X\webright )$
-
(g)
Brauer and Picard groups of $\mathsf{dgMod}_{R}$
-
(a)
-
26.
Explore examples in which Day convolution gives weird things, like $\mathsf{Fun}\webleft (\mathsf{B}\mathbb {Z}_{/n},\mathsf{Sets}\webright )$.
-
27.
Day convolution is a left Kan extension; explore the right Kan extension
-
28.
Further develop the theory of moduli categories of monoidal structures
-
29.
Picard group
-
(a)
Picard group for Day convolution. A special case is one of Kaplansky’s conjectures, , about units of group rings
-
(a)
-
30.
Day convolution between representable and an arbitrary presheaf $\mathcal{F}$ — can we prove something nice using the colimit formula for $\mathcal{F}$ in terms of representables?
-
31.
Notion of braided monoidal categories in which the braiding is not an isomorphism. Relation to
-
32.
Proving a certain diagram between free monoidal categories commutes involves Fermat’s little theorem. Can we reverse this and prove Fermat’s little theorem from the commutativty of that diagram?
- 33.
-
34.
Proof that monoidal equivalences $F$ of monoidal categories automatically admit monoidal natural isomorphisms $\operatorname {\mathrm{id}}_{\mathcal{C}}\cong F^{-1}\circ F$ and $\operatorname {\mathrm{id}}_{\mathcal{D}}\cong F\circ F^{-1}$.
-
35.
Proof that category with products is monoidal under the Cartesian monoidal structure, [Strickland, Proof that a cartesian category is monoidal].
-
36.
Explore 2-categorical algebra:
-
(a)
Find a construction of the free 2-group on a monoidal category. Apply it to the multiplicative structure on the category of finite sets and permutations, as well as to the multiplicative structure on the 1-truncation of the sphere spectrum, and try to figure out whether this looks like a categorification of $\mathbb {Q}$.
-
(b)
What is the free 2-group on $\webleft (\mathbb {\Delta },\oplus ,\webleft [0\webright ]\webright )$?
-
(a)
-
37.
Categorify the preorder $\leq $ on $\mathbb {N}$ to a promonad $\mathfrak {p}$ on the groupoid of finite sets and permutations $\mathbb {F}$:
-
(a)
A preorder is a monad in $\mathrm{Rel}$
-
(b)
A promonad is a monad in $\mathsf{Prof}$.
-
(c)
There’s a promonad $\mathfrak {p}$ in $\mathbb {F}$ defined by
\[ \mathfrak {p}\webleft (m,n\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \text{surjections from $\left\{ 1,\ldots ,m\right\} $ to $\left\{ 1,\ldots ,n\right\} $}\right\} \]This promonad categorifies $\leq $ in that its values are the witnesses to the fact that $m$ is bigger than $n$ (i.e. surjections).
-
(d)
Figure out whether this promonad extends to the 1-truncation of the sphere spectrum, and perhaps to other categorified analogues of monoids/groups/rings.
-
(a)
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
-
44.
obstruction theory for braided enhancements of monoidal categories, using the “moduli category of braided enhancements”
-
45.
Define symmetric and exterior algebras internal to braided monoidal categories
- 46.
- 47.
-
48.
Concepts of bicategories applied to monoidal categories (e.g. internal adjunctions lead to dualisable objects)
-
49.
Involutive Category Theory
- 50.
Bimonoidal Categories:
Six Functor Formalisms:
-
1.
Michael Shulman:
A lot of the "six functor formalism" makes sense in the context of an arbitrary indexed monoidal category (= monoidal fibration), particularly with cartesian base. In particular, I studied the external tensor product in this generality in my paper on Framed bicategories and monoidal fibrations.
The internal-hom of powersets in particular, with $\text{Ø}$ as a dualizing object, is well-known in constructive mathematics and topos theory, where powersets are in general a Heyting algebra rather than a Boolean algebra.
Morgan Rogers:
I second this: you’re discovering (and making pleasingly explicit, I might add) a special case of "thin category theory": a lot of what you’ve discovered will work for posets, with the powerset replaced with the frame of downsets :D
-
2.
A six functor formalism for monoids
- 3.
-
4.
Is the 1-categorical analogue of six functor formalisms given by Mann interesting?
-
(a)
Mann defines:
A six functor formalism is an $\infty $-functor $f\colon \mathsf{Corr}\webleft (C,E\webright )\to \mathsf{Cats}_{\infty }$ such that $-\otimes A$, $f^{*}$, and $f_{!}$ admit right adjoints
-
(b)
Is the notion
A 1-categorical six functor formalism is a (lax?) $2$-functor $f\colon \mathsf{Corr}\webleft (C,E\webright )\to \mathsf{Cats}_{2}$ (or should $\mathsf{Cats}$ be the target?) such that $-\otimes A$, $f^{*}$, and $f_{!}$ admit right adjoints
interesting?
-
(a)
-
5.
Interaction of the six functors with Kan extensions (e.g. how the left Kan extension of $-\otimes A$ may interact with the other functors)
-
6.
Contexts like Wirthmuller Grothendieck etc
-
7.
formalisation by cisinski and deglise
-
8.
How do the following examples fit?
-
(a)
base change between $\mathcal{C}_{/X}$ and $\mathcal{C}_{/Y}$
-
(b)
$f_{!}\dashv f_{*}\dashv f^{*}$ adjunction between powersets
-
(c)
$f_{!}\dashv f_{*}\dashv f^{*}$ adjunction between $\mathsf{Span}\webleft (\mathrm{pt},A\webright )$ and $\mathsf{Span}\webleft (\mathrm{pt},B\webright )$
-
(d)
quadruple adjunction between powersets induced by a relation
-
(e)
adjunctions between categories of presheaves induced by a functor or a profunctor
-
(f)
Adjunction between left $A$-sets and left $B$-sets
Do they have exceptional $f^{!}$? Is there a notion of Fourier–Mukai transform for them? What kind of compatibility conditions (proper base change, etc.) do we have?
-
(a)
Skew Monoidal Categories:
- 1.
-
2.
Try to come up with examples of skew monoidal categories by twisting a tensor product $A\otimes B$ into $T\webleft (A\webright )\otimes B$. Related idea: product of $G$-sets but twisted on the left by an automorphism of $G$, so that $\webleft (ag,b\webright )\sim \webleft (a,gb\webright )$ becomes $\webleft (a\phi \webleft (g\webright ),b\webright )\sim \webleft (a,gb\webright )$.
-
3.
Skew monoidal category induced from $G$-sets in analogy to Rel
-
4.
Free monoidal category on a skew monoidal category
-
5.
Skew monoidal structures associated to a locally Cartesian closed category
-
6.
Does the $\mathbb {E}_{1}$ tensor product of monoids admit a skew monoidal category structure?
-
7.
Is there a (right?) skew monoidal category structure on $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$ using right Kan extensions instead of left Kan extensions?
-
8.
Similarly, are there skew monoidal category structures on the subcategory of $\mathbf{Rel}\webleft (A,B\webright )$ spanned by the functions using left Kan extensions and left Kan lifts?
-
9.
Add example: $\mathcal{C}$ with coproducts, take $\mathcal{C}_{X/}$ and define
\[ \webleft (X\xrightarrow {f}A\webright )\oplus \webleft (X\xrightarrow {g}B\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [X\to X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}X\xrightarrow {f\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g}A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B\webright ] \] -
10.
Duals:
-
(a)
Dualisable objects in monoidal categories and traces of endomorphisms of them, including also examples for monoidal categories which are not autonomous/rigid, such as $\webleft (\mathsf{Fun}\webleft (\mathcal{C},\mathcal{C}\webright ),\circ ,\operatorname {\mathrm{id}}_{\mathcal{C}}\webright )$.
-
(b)
compact closed categories
-
(c)
star autonomous categories
-
(d)
Chu construction
-
(e)
Balanced monoidal categories,
-
(f)
Traced monoidal categories,
-
(a)
-
11.
Invertible objects and Picard groupoids
- 12.
-
13.
Free braided monoidal category with a braided monoid:
- 14.
Fibred Category Theory:
- 1.
- 2.
-
3.
Internal $\mathbf{Hom}$ in categories of co/Cartesian fibrations.
-
4.
Tensor structures on fibered categories by Luca Terenzi: . Check also the other papers by Luca Terenzi.
-
5.
(this is a cartesian morphism in $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$ apparently)
-
6.
CoCartesian fibration classifying $\mathsf{Fun}\webleft (F,G\webright )$,
Operads and Multicategories:
Monads:
-
1.
Relative monads: message Alyssa asking for her notes
- 2.
-
3.
Kantorovich monad () and probability monads in general, .
Enriched Categories:
-
1.
$\mathcal{V}$-matrices
Bicategories:
-
1.
Bigroupoid cardinality
-
2.
Bicategory where objects are groups and a morphism $G\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}H$ is a representation of $G^{\mathsf{op}}\times H$. (I.e. functors $\mathsf{B}{G}^{\mathsf{op}}\times \mathsf{B}{H}\to \mathsf{Vect}_{k}$).
-
3.
Relative monads internal to a bicategory
-
4.
Bicategory of monoid actions
- 5.
-
6.
$\mathrm{Rel}_{G}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{Fun}\webleft (\mathsf{B}{G},\mathrm{Rel}\webright )$
-
7.
$\mathrm{Rel}$ but for $\mathsf{Ab}$, where morphisms are pairings of the form $A\otimes _{\mathbb {Z}}B\to \mathbb {Z}$.
-
8.
2-dimensional co/limits in 2-category of categories and adjoint functors
-
9.
Category of equivalence classes
-
(a)
Given a category $\mathcal{C}$, we have a set $\mathrm{K}_{0}\webleft (\mathcal{C}\webright )$ of isomorphism classes of objects
-
(b)
Given a bicategory $\mathcal{C}$, there should be a category $\mathsf{K}_{0}\webleft (\mathcal{C}\webright )$ with $\operatorname {\mathrm{Hom}}_{\mathsf{K}_{0}\webleft (\mathcal{C}\webright )}\webleft (A,B\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathrm{K}_{0}\webleft (\mathsf{Hom}_{\mathcal{C}}\webleft (A,B\webright )\webright )$
-
(c)
The set $\mathrm{K}^{\mathrm{eq}}_{0}\webleft (\mathcal{C}\webright )$ of equivalence classes of objects of $\mathcal{C}$ should then satisfy
\[ \mathrm{K}^{\mathrm{eq}}_{0}\webleft (\mathcal{C}\webright )\cong \mathrm{K}_{0}\webleft (\mathsf{K}_{0}\webleft (\mathcal{C}\webright )\webright ). \]
-
(a)
-
10.
bicategory of chain complexes, section “Second Example: Differential Complexes of an Abelian Category” on Gabriel–Zisman’s calculus of fractions
-
11.
2-vector spaces
-
12.
Morita equivalence is equivalence internal to bimod
- 13.
-
14.
Bicategories of matrices, as in Street’s Variation through enrichment, also
- 15.
-
16.
What are the internal 2-adjunctions in the fundamental $2$-groupoid of a space?
-
17.
2-category structure on $\mathsf{Mod}_{R}$, where a $2$-morphism is a commutative square. Characterisation of adjuntions therein
-
18.
Cook up a very large list of examples of bicategories, like the ones I made for the AI problems. In particular, find an interesting bicategory of representations qualitatively different from the one I described in the Epoch AI problem
-
19.
2-category structure on category of $R$-algebras as enriched $\mathsf{Mod}_{R}$-categories
-
20.
Let $\mathcal{C}$ be a bicategory, let $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, and let $F,G\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Hom}_{\mathcal{C}}\webleft (A,B\webright )\webright )$.
-
(a)
Does precomposition with $\lambda ^{\mathcal{C}}_{A|F}\colon \operatorname {\mathrm{id}}_{A}\circ F\Rightarrow F$ induce an isomorphism of sets
\[ \operatorname {\mathrm{Hom}}_{\mathsf{Hom}_{\mathcal{C}}\webleft (A,B\webright )}\webleft (F,G\webright )\cong \operatorname {\mathrm{Hom}}_{\mathsf{Hom}_{\mathcal{C}}\webleft (A,B\webright )}\webleft (F\circ \operatorname {\mathrm{id}}_{A},G\webright ) \]for each $F,G\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Hom}_{\mathcal{C}}\webleft (A,B\webright )\webright )$?
-
(b)
Similarly, do we have an induced isomorphism of the form
\[ \operatorname {\mathrm{Hom}}_{\mathsf{Hom}_{\mathcal{C}}\webleft (A,B\webright )}\webleft (F,G\webright )\cong \operatorname {\mathrm{Hom}}_{\mathsf{Hom}_{\mathcal{C}}\webleft (A,B\webright )}\webleft (F,\operatorname {\mathrm{id}}_{B}\circ G\webright ) \]and so on?
-
(a)
-
21.
Are there two Duskin nerve functors? (lax/oplax/etc.?)
-
22.
Interaction with cotransformations:
-
(a)
Can we abstract the structure provided to $\mathsf{Cats}_{\mathsf{2}}$ by natural cotransformations?
-
(b)
Are there analogues of cotransformations for $\boldsymbol {\mathsf{Rel}}$, $\mathsf{Span}$, $\mathsf{BiMod}$, $\mathsf{MonAct}$, etc.?
-
(c)
Perhaps this might also make sense as a 1-categorical definition, e.g. comorphisms of groups from $A$ to $B$ as $\mathsf{Sets}\webleft (A,B\webright )$ quotiented by $f\webleft (ab\webright )\sim f\webleft (a\webright )f\webleft (b\webright )$.
-
(a)
-
23.
Consider developing the analogue of traces for endomorphisms of dualisable objects in monoidal categories to the setting of bicategories, including e.g. the trace of a category as a trace internal to $\mathsf{Prof}$.
-
24.
Centres of bicategories (lax, strict, etc.)
-
25.
Concepts of monoidal categories applied to bicategories (e.g. traces)
-
26.
Internal adjunctions in $\mathsf{Mod}$ as in Section 6.3 of [JY, 2-Dimensional Categories]; see Example 6.2.6 of [JY, 2-Dimensional Categories].
-
27.
Comonads in the bicategory of profunctors.
-
28.
2-limit of $\operatorname {\mathrm{id}},\operatorname {\mathrm{id}}\colon \mathsf{Sets}\rightrightarrows \mathsf{Sets}$ is $\mathsf{B}\mathbb {Z}$,
- 29.
- 30.
Types of Morphisms in Bicategories:
-
1.
Behaviour in 2-categories of pseudofunctors (or lax functors, etc.), e.g. pointwise pseudoepic morphisms in vs. pseudoepic morphisms in 2-categories of pseudofunctors.
-
2.
Statements like “coequifiers are lax epimorphisms”, Item 2 of Examples 2.4 of , along with most of the other statements/examples there.
-
3.
Dense, absolutely dense, etc. morphisms in bicategories
Internal adjunctions:
- 1.
-
2.
Moreover, by uniqueness of adjoints (
,
of
), this implies also that $S=f^{-1}$.
-
3.
define bicategory $\mathsf{Adj}\webleft (\mathcal{C}\webright )$
-
4.
walking monad
-
5.
proposition: 2-functors preserve unitors and associators
-
6.
https://ncatlab.org/nlab/show/2-category+of+adjunctions. Is there a 3-category too?
-
7.
https://ncatlab.org/nlab/show/free+monad
-
8.
https://ncatlab.org/nlab/show/CatAdj
-
9.
https://ncatlab.org/nlab/show/Adj
-
10.
$\mathsf{Adj}\webleft (\mathsf{Adj}\webleft (\mathcal{C}\webright )\webright )$
-
11.
Examples of internal adjunctions
2-Categorical Limits:
Double Categories:
Homological Algebra:
Topos theory:
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
-
9.
Grothendieck topologies on $\mathsf{B}{A}$
-
10.
Enriched Grothendieck topologies
-
11.
Cotopos theory:
-
(a)
Copresheaves and copresheaf cotopoi
-
(b)
Elementary cotopoi
- (i)
-
(ii)
In case you haven’t seen it yet, Grothendieck studies (pseudo) cotopos in pursuing stacks
-
(a)
Formal category theory:
-
1.
Yosegi boxes
Homotopical Algebra:
Simplicial stuff:
- 1.
-
2.
-
(a)
slogan: geometric definition of $\infty $-categories should be geometric for identities too
-
(b)
In an $\infty $-category, define a quasi-unit to be a 1-morphism $f$ such that
\begin{align*} \webleft [f\webright ]_{*} & \colon \operatorname {\mathrm{Hom}}_{\mathsf{Ho}\webleft (\mathsf{Spaces}\webright )}\webleft (\operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (X,A\webright )\operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (X,B\webright )\webright ),\\ \webleft [f\webright ]^{*} & \colon \operatorname {\mathrm{Hom}}_{\mathsf{Ho}\webleft (\mathsf{Spaces}\webright )}\webleft (\operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (B,X\webright )\operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,X\webright )\webright ) \end{align*}are the identity in $\mathsf{Ho}\webleft (\mathsf{Spaces}\webright )$. Explore equivalent conditions,
- (c)
- (d)
-
(a)
-
3.
,
-
4.
and
-
5.
Internal adjunctions in $\mathbb {\Delta }$ are the same as Galois connections between $\webleft [n\webright ]$ and $\webleft [m\webright ]$.
- 6.
-
7.
draw coherence for lax functors using the diagram for $\Delta ^{2}$
-
8.
characterisation of simplicial sets such that left, right, and two-sided homotopies agree
-
9.
every continuous simplicial set arises as the nerve of a poset.
-
10.
Functor $\mathrm{sd}$ is convolution of ${\text{よ}}_{\mathbb {\Delta }}$ with itself; see
-
11.
Extra degeneracies
-
12.
Comparison between $\Delta ^{1}/\partial \Delta ^{1}$ and $\mathsf{B}\mathbb {N}$
$\infty $-Categories:
Condensed Mathematics:
Monoids:
- 1.
-
2.
Homological algebra of $A$-sets,
-
3.
Catalan monoids,
- 4.
- 5.
-
6.
,
-
7.
Six functor formalism for monoids, following Chapter 4: Constructions With Sets, Section 4.6.4, but in which $\cap $ and $\webleft [-,-\webright ]$ are replaced with Day convolution.
-
8.
Monoid $\webleft (\left\{ 1,\ldots ,n\right\} \cup \infty ,\gcd \webright )$. The element $\infty $ can be replaced by $p^{\operatorname*{\operatorname {\mathrm{min}}}\webleft (e^{1}_{1},\ldots ,e^{m}_{1}\webright )}_{1}\cdots p^{\operatorname*{\operatorname {\mathrm{min}}}\webleft (e^{1}_{k},\ldots ,e^{m}_{k}\webright )}_{k}$.
-
9.
Universal property of localisation of monoids as a left adjoint to the forgetful functor $\mathcal{C}\to \mathcal{D}$, where:
-
•
$\mathcal{C}$ is the category whose objects are pairs $\webleft (A,S\webright )$ with $A$ a monoid and $S$ a submonoid of $A$.
-
•
$\mathcal{D}$ is the category whose objects are pairs $\webleft (A,S\webright )$ with $A$ a monoid and $S$ a submonoid of $A$ which is also a group.
Explore this also for localisations of rings
Explore if we can define field spectra with an approach like this
-
•
-
10.
Adjunction between monoids and monoids with zero corresponding to $\webleft (-\webright )^{-}\dashv \webleft (-\webright )^{+}$
-
11.
Rock paper scissors as an example of a non-associative operation
- 12.
-
13.
Witt monoid,
-
14.
semi-direct product of monoids,
-
15.
morphisms of monoids as natural transformation between left $A$-sets over $A$ and $B_{A}$.
-
16.
Figure out if 2-morphisms of monoids coming from $\mathsf{Fun}^{\otimes }\webleft (A_{\mathsf{disc}},B_{\mathsf{disc}}\webright )$, $\mathsf{PseudoFun}\webleft (\mathsf{B}{A},\mathsf{B}{B}\webright )$, etc. are interesting
-
17.
Write sections on the quotient and set of fixed points of a set by a monoid action
-
18.
Isbell’s zigzag theorem for semigroups: the following conditions are equivalent:
-
(a)
A morphism $f\colon A\to B$ of semigroups is an epimorphism.
-
(b)
For each $b\in B$, one of the following conditions is satisfied:
-
•
We have $f\webleft (a\webright )=b$.
-
•
There exist some $m\in \mathbb {N}_{\geq 1}$ and two factorisations
\begin{align*} b & = a_{0}y_{1},\\ b & = x_{m}a_{2m} \end{align*}connected by relations
\begin{align*} a_{0} = x_{1}a_{1},\\ a_{1}y_{1} = a_{2}y_{2},\\ x_{1}a_{2} = x_{2}a_{3},\\ a_{2m-1}y_{m} = a_{2m} \end{align*}such that, for each $1\leq i\leq m$, we have $a_{i}\in \mathrm{Im}\webleft (f\webright )$.
-
•
Wikipedia says in :
For monoids, this theorem can be written more concisely:
-
(a)
-
19.
Representation theory of monoids
Monoid Actions:
- 1.
-
2.
has some interesting things, like a fully faithful embedding of $\mathsf{Mon}\webleft (\mathsf{Sets}^{\mathrm{L}}_{A}\webright )$ into $\mathsf{Mon}_{/A}$ whose essential image is given by those monoids of the form $X\rtimes _{\alpha }A$.
-
3.
$f_{!}\dashv f^{*}\dashv f_{*}$ adjunction
-
(a)
Is it related to the Kan extensions adjunction for $f\colon \mathsf{B}{A}\to \mathsf{B}{B}$ and the categories $\mathsf{Sets}^{\mathrm{L}}_{A}\cong \mathsf{PSh}\webleft (\mathsf{B}{A}^{\mathsf{op}},\mathsf{Sets}\webright )$ and $\mathsf{Sets}^{\mathrm{L}}_{B}\cong \mathsf{PSh}\webleft (\mathsf{B}{B}^{\mathsf{op}},\mathsf{Sets}\webright )$?
-
(b)
Is it related to the cobase change adjunction of ? Maybe we can take a morphism of monoids $f\colon A\to B$ and consider $B^{\mathrm{L}}_{A}$ as a left $A$-set, and then $\webleft (\mathsf{Sets}^{\mathrm{L}}_{A}\webright )_{A/}$ and $\webleft (\mathsf{Sets}^{\mathrm{L}}_{A}\webright )_{B^{\mathrm{L}}_{A}/}$
-
(a)
- 4.
-
5.
double category of monoid actions
-
6.
Analogue of Brauer groups for $A$-sets
-
7.
Hochschild homology for $A$-sets
Group Theory:
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
-
10.
MO: cardinality of $\mathrm{Cl}\webleft (\mathrm{Aut}\webleft (\mathrm{GL}_{n}\webleft (\mathbb {F}_{q}\webright )\webright )\webright )$
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
-
18.
$\mathrm{GL}_{n}\webleft (K\webright )$ for $K$ a skew field
-
19.
, , , , , ,
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
-
26.
finite subgroups of $\mathrm{SU}\webleft (2\webright )$, and viewing them as groups of rotations and such
- 27.
-
28.
, ,
- 29.
-
30.
Study the functoriality properties of $G\mapsto \mathrm{Aut}\webleft (G\webright )$ via functoriality of ends
-
31.
Is $\sum _{\webleft [g\webright ]\in \mathrm{Cl}\webleft (G\webright )}\frac{1}{\left\lvert g\right\rvert }$ an interesting invariant of $G$?
-
32.
Idempotent endomorphism $f\colon A\to A$ is the same as a decomposition $A\cong B\oplus C$ via $B\cong \mathrm{Im}\webleft (f\webright )$ and $C\cong \mathrm{Ker}\webleft (f\webright )$.
- 33.
Linear Algebra:
-
1.
Size of conjugacy class $\webleft [A\webright ]$ of $A\in \mathrm{GL}_{n}\webleft (\mathbb {F}_{q}\webright )$ is given by $\# \mathrm{GL}_{n}\webleft (\mathbb {F}_{q}\webright )$ divided by the centralizer $\mathrm{Z}_{\mathrm{GL}_{n}\webleft (\mathbb {F}_{q}\webright )}\webleft (A\webright )$ of $A$ in $\mathrm{GL}_{n}\webleft (\mathbb {F}_{q}\webright )$, whose order is given by
\begin{align*} \# \mathrm{Z}_{\mathrm{GL}_{n}\webleft (\mathbb {F}_{q}\webright )}\webleft (A\webright ) & = \prod ^{k}_{i=1}\# \mathrm{GL}_{r_{i}}\webleft (\mathbb {F}_{q}\webright )\\ & = q^{\sum ^{k}_{i=1}\binom {r_{i}}{2}}\prod ^{k}_{i=1}\prod ^{r_{i}-1}_{j=0}\webleft (q^{r_{i}-j}-1\webright )\end{align*}if $A$ is diagonalisable with eigenvalues $\lambda _{1},\ldots ,\lambda _{k}$ having multiplicities $r_{1},\ldots ,r_{k}$. More generally, see
- 2.
-
3.
conjugacy for $\mathrm{GL}_{n}\webleft (\mathbb {F}_{q}\webright )$,
-
4.
,
- 5.
- 6.
- 7.
- 8.
- 9.
Noncommutative Algebra:
Commutative Algebra:
-
1.
If $M\in \operatorname {\mathrm{Pic}}\webleft (R\webright )$, then $\mathrm{Aut}\webleft (M\webright )\cong R^{\times }$.
- 2.
- 3.
- 4.
-
5.
Derivations between morphisms of $R$-algebras, after
-
(a)
Namely, a derivation from a morphism $f\colon A\to B$ of $R$-algebras to a morphism $g\colon A\to B$ of $R$-algebras is a map $D\colon B\to B$ such that we have
\[ D\webleft (ab\webright )=g\webleft (a\webright )D\webleft (b\webright )+D\webleft (a\webright )f\webleft (b\webright ) \]for each $a,b\in B$.
-
(a)
Hyper Algebra:
Coalgebra:
Topological Algebra:
Differential Graded Algebras:
Topology:
-
1.
Topologies on $\mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$,
- 2.
- 3.
-
4.
and comments therein
-
5.
This paper has some cool references on convergence spaces:
- 6.
-
7.
Write about the 6-functor formalism for sheaves on topological spaces and for topological stacks, with lots of examples.
-
(a)
MO question titled 6-functor formalism for topological stacks:
-
(a)
Measure Theory:
- 1.
- 2.
- 3.
-
4.
There’s a theorem saying that there does not exist an infinite-dimensional “Lebesgue” measure, i.e. (from ):
Let $X$ be an infinite-dimensional, separable Banach space. Then, the only locally finite and translation invariant Borel measure $\mu $ on $X$ is a trivial measure. Equivalently, there is no locally finite, strictly positive, and translation invariant measure on $X$.
What kind of measures exist/not exist that satisfy all conditions above except being locally finite?
- 5.
-
6.
Functions $f_{!}$, $f^{*}$, and $f_{*}$ between spaces of (probability) measures on probability/measurable spaces, mimicking how a map of sets $f\colon X\to Y$ induces morphisms of sets $f_{!}$, $f^{*}$, and $f_{*}$ between $\mathcal{P}\webleft (X\webright )$ and $\mathcal{P}\webleft (Y\webright )$.
-
7.
Analogies between representable presheaves and the Yoneda lemma on the one hand and Dirac probability measures on the other hand
-
(a)
Universal property of the embedding of a space $X$ into the space of probability measures on $X$
-
(b)
Same question but for distributions
-
(c)
non-symmetric metric on space of probability measures where we define $\mathrm{d}\webleft (\mu ,\nu \webright )$ to be the measure given by
\[ U\mapsto \int _{U}\rho _{\mu }\, \mathrm{d}\nu , \]where $\rho _{\mu }$ is the probability density of $\mu $. Can we make this idea work?
-
(a)
- 8.
-
9.
In particular, I came across a PhD thesis by Martial Agueh. I thought it was interesting because it explicitly investigated the geodesics of Wasserstein space to produce solutions to a type of parabolic PDE.
Probability Theory:
- 1.
- 2.
- 3.
-
4.
Lévy’s forgery theorem
- 5.
- 6.
-
7.
Categorical probability theory
- 8.
- 9.
-
10.
Connection between fractional differential operators and stochastic processes with jumps
Statistics:
Metric Spaces:
-
1.
Lawvere metric spaces: object of $\mathcal{V}$-natural transformations corresponds to $\inf \webleft (\mathrm{d}\webleft (f\webleft (x\webright ),g\webleft (x\webright )\webright )\webright )$.
-
2.
Does the assignment $d\webleft (x,y\webright )\mapsto d\webleft (x,y\webright )/\webleft (1+d\webleft (x,y\webright )\webright )$ constructing a bounded metric from a metric be given a universal property?
-
3.
Explore Lawvere metric spaces in a comprehensive manner
-
4.
metric $\mathrm{lcm}\webleft (x,y\webright )/\gcd \webleft (x,y\webright )$ on $\mathbb {N}$, . What shape do balls on $\mathbb {N}\times \mathbb {N}$ have with respect to this metric?
- 5.
-
6.
Simon Willerton’s work on the Legendre–Fenchel transform:
Special Functions:
$p$-Adic Analysis:
- 1.
-
2.
Analysis of functions $\mathbb {Z}_{p}\to \mathbb {Q}_{q}$, $\mathbb {Q}_{p}\to \mathbb {Q}_{q}$, $\mathbb {Z}_{p}\to \mathbb {C}_{q}$, etc.
Partial Differential Equations:
-
1.
Moduli of PDEs
- 2.
- 3.
- 4.
-
5.
Proof of the smoothing property of the heat equation via:
-
6.
Geometry of PDEs:
Functional Analysis:
- 1.
- 2.
-
3.
Tate vector spaces
-
4.
Analytic sheaves,
- 5.
-
6.
Vidav–Palmer theorem
-
7.
In the Hilbert space $\ell ^{2}\webleft (\mathbb {N};\mathbb {C}\webright )$, the operator $\webleft (x_{n}\webright )_{n\in \mathbb {N}}\mapsto \webleft (x_{n+1}\webright )_{n\in \mathbb {N}}$ admits $\webleft (x_{n}\webright )_{n\in \mathbb {N}}\mapsto \webleft (0,x_{0},x_{1},\ldots \webright )$ as its adjoint.
- 8.
Lie algebras:
Modular Representation Theory:
Homotopy theory:
- 1.
-
2.
,
-
3.
, , , .
-
4.
Pascal’s triangle via homology of $n$-tori,
-
5.
Conditions on morphisms of spaces $f\colon X\to Y$ such that $f^{*}\colon \webleft [Y,K\webright ]\to \webleft [X,K\webright ]$ or $f_{*}\colon \webleft [K,X\webright ]\to \webleft [K,Y\webright ]$ are injective/surjective (so, epi/monomorphisms in $\mathsf{Ho}\webleft (\mathsf{Top}\webright )$) or other conditions.
Algebraic Geometry:
Differential Geometry:
Number Theory:
Classical Mechanics:
Quantum Mechanics:
Quantum Field Theory:
-
1.
and
-
2.
The current ongoing work on higher gauge theory, specially Christian Saemann’s
-
3.
The recent work about determining the value of the strong coupling constant in the long-distance range, some pointers and keywords for this are available at this scientific american article.
Combinatorics:
-
1.
Catalan numbers,
Other:
- 1.
-
2.
Are sedenions and higher useful for anything?
- 3.
-
4.
Tambara functors,
-
5.
2-vector spaces
-
6.
2-term chain complexes. They form a 2-category and middle-four exchange holds, the proof using the fact that we have
\[ h_{1}\circ \alpha +\beta \circ g_{2}=k_{1}\circ \alpha +\beta \circ f_{2}, \]which uses the chain homotopy identities
\begin{align*} d_{V}\circ \alpha & = g_{2}-f_{2},\\ -\beta \circ d_{V} & = h_{1}-k_{1}. \end{align*}Can we modify this to work for usual chain complexes, seeking an answer to ? What seems to make things go wrong in that case is that the chain homotopy identities are replaced with
\begin{align*} \alpha _{n+1}\circ d^{V}_{n}+d^{W}_{n-1}\circ \alpha _{n} & = g_{n}-f_{n},\\ \beta _{n+1}\circ d^{V}_{n}+d^{W}_{n-1}\circ \beta _{n} & = k_{n}-h_{n}. \end{align*} - 7.
- 8.
-
9.
Classifying space of $\mathbb {Q}_{p}$
- 10.
-
11.
Construction of $\mathbb {R}$ via slopes:
- (a)
- (b)
-
(c)
Pierre Colmez’s comment “Et si on remplace $\mathbb {Z}$ par $\mathbb {Q}$, on obtient les adèles.”
-
(d)
I wonder if one could apply an analogue of this construction to the sphere spectrum and obtain a kind of spectral version of the real numbers, as in e.g. following the spirit of https://mathoverflow.net/questions/443018.
- 12.
- 13.
- 14.
-
15.
The works of David Kern,
- 16.
- 17.
- 18.
- 19.
- 20.
-
21.
( Isbell conjugacy and the reflexive completion )
- 22.
-
23.
The works of Philip Saville,
- 24.
-
25.
(One-object lax transformations)
- 26.
- 27.
-
28.
(The Norm Functor over Schemes)
-
29.
(Adjunctions with respect to profunctors)
-
30.
($\mathsf{Prof}$ is free completion of $\mathsf{Cats}$ under right extensions)
-
31.
there’s some cool stuff in (Polynomial Functors: A Mathematical Theory of Interaction), e.g. on cofunctors.
- 32.
- 33.
General TODO: