3.2.4 Tables of Analogies Between Set Theory and Category Theory

Here we record some analogies between notions in set theory and category theory. The analogies relating to presheaves relate equally well to copresheaves, as the opposite $X^{\mathrm{op}}$ of a set $X$ is just $X$ again.

The basic analogies between set theory and category theory are summarised in the following table:

Set Theory

Category Theory

Enrichment in $\{ \mathsf{true},\mathsf{false}\} $

Enrichment in $\mathsf{Sets}$

Set $X$

Category $\mathcal{C}$

Element $x\in X$

Object $X\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$

Function $f\colon X\to Y$

Functor $F\colon \mathcal{C}\to \mathcal{D}$

Function $X\to \{ \mathsf{true},\mathsf{false}\} $

Copresheaf $\mathcal{C}\to \mathsf{Sets}$

Function $X\to \{ \mathsf{true},\mathsf{false}\} $

Presheaf $\mathcal{C}^{\mathsf{op}}\to \mathsf{Sets}$

The category of presheaves $\mathsf{PSh}\webleft (\mathcal{C}\webright )$ and the category of copresheaves $\mathsf{CoPSh}\webleft (\mathcal{C}\webright )$ on a category $\mathcal{C}$ are the 1-categorical counterparts to the powerset $\mathcal{P}\webleft (X\webright )$ of subsets of a set $X$. The further analogies built upon this are summarised in the following table:

Set Theory

Category Theory

Powerset $\mathcal{P}\webleft (X\webright )$

Presheaf category $\mathsf{PSh}\webleft (\mathcal{C}\webright )$

Characteristic function

$\chi _{\left\{ x\right\} }\colon X\to \{ \mathsf{t},\mathsf{f}\} $

Representable presheaf

$h_{X}\colon \mathcal{C}^{\mathsf{op}}\hookrightarrow \mathsf{Sets}$

Characteristic embedding

$\chi _{\webleft (-\webright )}\colon X\hookrightarrow \mathcal{P}\webleft (X\webright )$

Yoneda embedding

${\text{よ}}\colon \mathcal{C}^{\mathsf{op}}\hookrightarrow \mathsf{PSh}\webleft (\mathcal{C}\webright )$

Characteristic relation

$\chi _{X}\webleft (-_{1},-_{2}\webright )\colon X\times X\to \{ \mathsf{t},\mathsf{f}\} $

Hom profunctor

$\operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (-_{1},-_{2}\webright )\colon \mathcal{C}^{\mathsf{op}}\times \mathcal{C}\to \mathsf{Sets}$

The Yoneda lemma for sets

$\operatorname {\mathrm{Hom}}_{\mathcal{P}\webleft (X\webright )}\webleft (\chi _{x},\chi _{U}\webright )=\chi _{U}\webleft (x\webright )$

The Yoneda lemma for categories

$\operatorname {\mathrm{Nat}}\webleft (h_{X},\mathcal{F}\webright )\cong \mathcal{F}\webleft (X\webright )$

The characteristic

embedding is fully faithful,

$\operatorname {\mathrm{Hom}}_{\mathcal{P}\webleft (X\webright )}\webleft (\chi _{x},\chi _{y}\webright )=\chi _{X}\webleft (x,y\webright )$

The Yoneda

embedding is fully faithful,

$\operatorname {\mathrm{Nat}}\webleft (h_{X},h_{Y}\webright )\cong \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (X,Y\webright )$

Subsets are unions

of their elements

$\displaystyle U=\bigcup _{x\in U}\left\{ x\right\} $

or

$\displaystyle \chi _{U}=\operatorname*{\operatorname {\mathrm{colim}}}_{\chi _{x}\in \mathcal{P}\webleft (U\webright )}\webleft (\chi _{x}\webright )$

Presheaves are colimits

of representables,

$\displaystyle \mathcal{F}\cong \operatorname*{\operatorname {\mathrm{colim}}}_{h_{X}\in \int _{\mathcal{C}}\mathcal{F}}\webleft (h_{X}\webright )$

We summarise the analogies between un/straightening in set theory and category theory in the following table:

Set Theory

Category Theory

Assignment

$U\mapsto \chi _{U}$

Assignment

$\mathcal{F}\mapsto \textstyle \int _{\mathcal{C}}\mathcal{F}$

Un/straightening isomorphism

$\mathcal{P}\webleft (X\webright )\cong \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright )$

Un/straightening equivalence

$\mathsf{PSh}\webleft (\mathcal{C}\webright )\mathrel {\smash {\overset {\scriptscriptstyle \text{eq.}}\cong }}\mathsf{DFib}\webleft (\mathcal{C}\webright )$

We summarise the analogies between functions $\mathcal{P}\webleft (A\webright )\to \mathcal{P}\webleft (B\webright )$ and functors $\mathsf{PSh}\webleft (\mathcal{C}\webright )\to \mathsf{PSh}\webleft (\mathcal{D}\webright )$ in the following table:

Set Theory

Category Theory

Direct image function

$f_{*}\colon \mathcal{P}\webleft (X\webright )\to \mathcal{P}\webleft (Y\webright )$

Direct image functor

$F_{*}\colon \mathsf{PSh}\webleft (\mathcal{C}\webright )\to \mathsf{PSh}\webleft (\mathcal{D}\webright )$

Inverse image function

$f^{-1}\colon \mathcal{P}\webleft (Y\webright )\to \mathcal{P}\webleft (X\webright )$

Inverse image functor

$F^{*}\colon \mathsf{PSh}\webleft (\mathcal{D}\webright )\to \mathsf{PSh}\webleft (\mathcal{C}\webright )$

Direct image with

compact support function

$f_{!}\colon \mathcal{P}\webleft (X\webright )\to \mathcal{P}\webleft (Y\webright )$

Direct image with

compact support functor

$F_{!}\colon \mathsf{PSh}\webleft (\mathcal{C}\webright )\to \mathsf{PSh}\webleft (\mathcal{D}\webright )$

We summarise the analogies between functions relations and profunctors in the following table:

Set Theory

Category Theory

Relation $R\colon X\times Y\to \{ \mathsf{t},\mathsf{f}\} $

Profunctor $\mathfrak {p}\colon \mathcal{D}^{\mathsf{op}}\times \mathcal{C}\to \mathsf{Sets}$

Relation $R\colon X\to \mathcal{P}\webleft (Y\webright )$

Profunctor $\mathfrak {p}\colon \mathcal{C}\to \mathsf{PSh}\webleft (\mathcal{D}\webright )$

Relation as a cocontinuous

morphism of posets

$R\colon \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (Y\webright ),\subset \webright )$

Profunctor as a

colimit-preserving functor

$\mathfrak {p}\colon \mathsf{PSh}\webleft (\mathcal{C}\webright )\to \mathsf{PSh}\webleft (\mathcal{D}\webright )$


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: