4.1.1 The Terminal Set

The terminal set is the terminal object of $\mathsf{Sets}$ as in Unresolved reference, Unresolved reference.

Concretely, the terminal set is the pair $\smash {\webleft (\mathrm{pt},\left\{ !_{A}\right\} _{A\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )}\webright )}$ consisting of:

  1. 1.

    The Limit. The punctual set $\mathrm{pt}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \star \right\} $.

  2. 2.

    The Cone. The collection of maps

    \[ \left\{ !_{A}\colon A\to \mathrm{pt}\right\} _{A\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )} \]

    defined by

    \[ !_{A}\webleft (a\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\star \]

    for each $a\in A$ and each $A\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.

We claim that $\mathrm{pt}$ is the terminal object of $\mathsf{Sets}$. Indeed, suppose we have a diagram of the form

in $\mathsf{Sets}$. Then there exists a unique map $\phi \colon A\to \mathrm{pt}$ making the diagram
commute, namely $!_{A}$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: