4.1.2 Products of Families of Sets

    Let $\left\{ A_{i}\right\} _{i\in I}$ be a family of sets.

    The product1 of $\left\{ A_{i}\right\} _{i\in I}$ is the product of $\left\{ A_{i}\right\} _{i\in I}$ in $\mathsf{Sets}$ as in Unresolved reference, Unresolved reference.


    1. 1Further Terminology: Also called the Cartesian product of $\left\{ A_{i}\right\} _{i\in I}$.

    Concretely, the product of $\left\{ A_{i}\right\} _{i\in I}$ is the pair $\webleft (\prod _{i\in I}A_{i},\left\{ \operatorname {\mathrm{\mathrm{pr}}}_{i}\right\} _{i\in I}\webright )$ consisting of:

    1. 1.

      The Limit. The set $\prod _{i\in I}A_{i}$ defined by

      \[ \prod _{i\in I}A_{i} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ f\in \mathsf{Sets}\left(I,\bigcup _{i\in I}A_{i}\right)\ \middle |\ \begin{aligned} & \text{for each $i\in I$, we}\\ & \text{have $f\webleft (i\webright )\in A_{i}$}\end{aligned} \right\} . \]
    2. 2.

      The Cone. The collection

      \[ \left\{ \operatorname {\mathrm{\mathrm{pr}}}_{i} \colon \prod _{i\in I}A_{i}\to A_{i}\right\} _{i\in I} \]

      of maps given by

      \[ \operatorname {\mathrm{\mathrm{pr}}}_{i}\webleft (f\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (i\webright ) \]

      for each $f\in \prod _{i\in I}A_{i}$ and each $i\in I$.

    We claim that $\prod _{i\in I}A_{i}$ is the categorical product of $\left\{ A_{i}\right\} _{i\in I}$ in $\mathsf{Sets}$. Indeed, suppose we have, for each $i\in I$, a diagram of the form

    in $\mathsf{Sets}$. Then there exists a unique map $\phi \colon P\to \prod _{i\in I}A_{i}$ making the diagram
    commute, being uniquely determined by the condition $\operatorname {\mathrm{\mathrm{pr}}}_{i}\circ \phi =p_{i}$ for each $i\in I$ via

    \[ \phi \webleft (x\webright )=\webleft (p_{i}\webleft (x\webright )\webright )_{i\in I} \]

    for each $x\in P$.

    Less formally, we may think of Cartesian products and projection maps as follows:

  • 1.

    We think of $\prod _{i\in I}A_{i}$ as the set whose elements are $I$-indexed collections $\webleft (a_{i}\webright )_{i\in I}$ with $a_{i}\in A_{i}$ for each $i\in I$.

  • 2.

    We view the projection maps

    \[ \left\{ \operatorname {\mathrm{\mathrm{pr}}}_{i} \colon \prod _{i\in I}A_{i}\to A_{i}\right\} _{i\in I} \]

    as being given by

    \[ \operatorname {\mathrm{\mathrm{pr}}}_{i}\webleft (\webleft (a_{j}\webright )_{j\in I}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}a_{i} \]

    for each $\webleft (a_{j}\webright )_{j\in I}\in \prod _{i\in I}A_{i}$ and each $i\in I$.

  • Let $\left\{ A_{i}\right\} _{i\in I}$ be a family of sets.

    1. 1.

      Functoriality. The assignment $\left\{ A_{i}\right\} _{i\in I}\mapsto \prod _{i\in I}A_{i}$ defines a functor

      \[ \prod _{i\in I}\colon \mathsf{Fun}\webleft (I_{\mathsf{disc}},\mathsf{Sets}\webright )\to \mathsf{Sets} \]

      where

      • Action on Objects. For each $\webleft (A_{i}\webright )_{i\in I}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Fun}\webleft (I_{\mathsf{disc}},\mathsf{Sets}\webright )\webright )$, we have

        \[ \left[\prod _{i\in I}\right]\webleft (\webleft (A_{i}\webright )_{i\in I}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\prod _{i\in I}A_{i} \]
      • Action on Morphisms. For each $\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Fun}\webleft (I_{\mathsf{disc}},\mathsf{Sets}\webright )\webright )$, the action on $\operatorname {\mathrm{Hom}}$-sets

        \[ \left(\prod _{i\in I}\right)_{\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}} \colon \operatorname {\mathrm{Nat}}\webleft (\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}\webright )\to \mathsf{Sets}\left(\prod _{i\in I}A_{i},\prod _{i\in I}B_{i}\right) \]

        of $\prod _{i\in I}$ at $\webleft (\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}\webright )$ is defined by sending a map

        \[ \left\{ f_{i}\colon A_{i}\to B_{i} \right\} _{i\in I} \]

        in $\operatorname {\mathrm{Nat}}\webleft (\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}\webright )$ to the map of sets

        \[ \prod _{i\in I}f_{i}\colon \prod _{i\in I}A_{i}\to \prod _{i\in I}B_{i} \]

        defined by

        \[ \left[\prod _{i\in I}f_{i}\right]\webleft (\webleft (a_{i}\webright )_{i\in I}\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f_{i}\webleft (a_{i}\webright )\webright )_{i\in I} \]

        for each $\webleft (a_{i}\webright )_{i\in I}\in \prod _{i\in I}A_{i}$.

    Item 1: Functoriality
    This follows from Unresolved reference, Unresolved reference of Unresolved reference.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: