4.2.1 The Initial Set

The initial set is the initial object of $\mathsf{Sets}$ as in Unresolved reference, Unresolved reference.

Concretely, the initial set is the pair $\smash {\webleft (\text{Ø},\left\{ \iota _{A}\right\} _{A\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )}\webright )}$ consisting of:

  1. 1.

    The Colimit. The empty set $\text{Ø}$ of Definition 4.3.1.1.1.

  2. 2.

    The Cocone. The collection of maps

    \[ \left\{ \iota _{A}\colon \text{Ø}\to A\right\} _{A\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )} \]

    given by the inclusion maps from $\text{Ø}$ to $A$.

We claim that $\text{Ø}$ is the initial object of $\mathsf{Sets}$. Indeed, suppose we have a diagram of the form

in $\mathsf{Sets}$. Then there exists a unique map $\phi \colon \text{Ø}\to A$ making the diagram
commute, namely the inclusion map $\iota _{A}$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: