4.4.8 Isbell Duality for Sets

Let $X$ be a set.

The Isbell function of $X$ is the map

\[ \mathsf{I}\colon \mathcal{P}\webleft (X\webright )\to \mathsf{Sets}\webleft (X,\mathcal{P}\webleft (X\webright )\webright ) \]

defined by

\[ \mathsf{I}\webleft (U\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\mspace {-3mu}[x\mapsto \webleft [U,\left\{ x\right\} \webright ]_{X}]\mspace {-3mu}] \]

for each $U\in \mathcal{P}\webleft (X\webright )$.

Recall from Remark 4.4.1.1.2 that we may view the powerset $\mathcal{P}\webleft (X\webright )$ of a set $X$ as the decategorification of the category of presheaves $\mathsf{PSh}\webleft (\mathcal{C}\webright )$ of a category $\mathcal{C}$. Building upon this analogy, we want to mimic the definition of the Isbell $\mathsf{Spec}$ functor, which is given on objects by

\[ \mathsf{Spec}\webleft (\mathcal{F}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{Nat}}\webleft (\mathcal{F},h_{\webleft (-\webright )}\webright ) \]

for each $\mathcal{F}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{PSh}\webleft (\mathcal{C}\webright )\webright )$. To this end, we could define

\[ \mathsf{I}\webleft (U\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,\chi _{\webleft (-\webright )}\webright ]_{X}, \]

replacing:

  • The Yoneda embedding $X\mapsto h_{X}$ of $\mathcal{C}$ into $\mathsf{PSh}\webleft (\mathcal{C}\webright )$ with the characteristic embedding $x\mapsto \chi _{x}$ of $X$ into $\mathcal{P}\webleft (X\webright )$ of Definition 4.5.4.1.1.

  • The internal Hom $\operatorname {\mathrm{Nat}}$ of $\mathsf{PSh}\webleft (\mathcal{C}\webright )$ with the internal Hom $\webleft [-,-\webright ]_{X}$ of $\mathcal{P}\webleft (X\webright )$ of Definition 4.4.7.1.1.

However, since $\webleft [U,\chi _{x}\webright ]_{X}$ is a subset of $U$ instead of a truth value, we get a function

\[ \mathsf{I}\colon \mathcal{P}\webleft (X\webright )\to \mathsf{Sets}\webleft (X,\mathcal{P}\webleft (X\webright )\webright ) \]

instead of a function

\[ \mathsf{I}\colon \mathcal{P}\webleft (X\webright )\to \mathcal{P}\webleft (X\webright ). \]

This makes some of the properties involving $\mathsf{I}$ a bit more cumbersome to state, although we still have an analogue of Isbell duality in that $\mathsf{I}_{!}\circ \mathsf{I}$ evaluates to $\operatorname {\mathrm{id}}_{\mathcal{P}\webleft (X\webright )}$ in the sense of Proposition 4.4.8.1.3.

The diagram

commutes, i.e. we have

\[ \mathsf{I}_{!}\webleft (\mathsf{I}\webleft (U\webright )\webright )=[\mspace {-3mu}[x\mapsto [\mspace {-3mu}[y\mapsto U]\mspace {-3mu}]]\mspace {-3mu}] \]

for each $U\in \mathcal{P}\webleft (X\webright )$.

We have

\begin{align*} \mathsf{I}_{!}\webleft (\mathsf{I}\webleft (U\webright )\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{I}_{!}\webleft ([\mspace {-3mu}[x\mapsto U^{\textsf{c}}\cup \left\{ x\right\} ]\mspace {-3mu}]\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\mspace {-3mu}[x\mapsto \mathsf{I}\webleft (U^{\textsf{c}}\cup \left\{ x\right\} \webright )]\mspace {-3mu}]\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\mspace {-3mu}[x\mapsto [\mspace {-3mu}[y\mapsto \webleft (U^{\textsf{c}}\cup \left\{ x\right\} \webright )^{\textsf{c}}\cup \left\{ x\right\} ]\mspace {-3mu}]]\mspace {-3mu}]\\ & = [\mspace {-3mu}[x\mapsto [\mspace {-3mu}[y\mapsto \webleft (U\cap \webleft (X\setminus \left\{ x\right\} \webright )\webright )\cup \left\{ x\right\} ]\mspace {-3mu}]]\mspace {-3mu}]\\ & = [\mspace {-3mu}[x\mapsto [\mspace {-3mu}[y\mapsto \webleft (U\setminus \left\{ x\right\} \webright )\cup \left\{ x\right\} ]\mspace {-3mu}]]\mspace {-3mu}]\\ & = [\mspace {-3mu}[x\mapsto [\mspace {-3mu}[y\mapsto U]\mspace {-3mu}]]\mspace {-3mu}], \end{align*}

where we have used Item 2 of Proposition 4.3.11.1.2 for the fourth equality above.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: