The powerset of $X$ is the set $\mathcal{P}\webleft (X\webright )$ defined by
Let $X$ be a set.
The powerset of $X$ is the set $\mathcal{P}\webleft (X\webright )$ defined by
Under the analogy that $\{ \mathsf{t},\mathsf{f}\} $ should be the $\webleft (-1\webright )$-categorical analogue of $\mathsf{Sets}$, we may view the powerset of a set as a decategorification of the category of presheaves of a category (or of the category of copresheaves):
The powerset of a set $X$ is equivalently (Item 2 of Proposition 4.5.1.1.4) the set
of functions from $X$ to the set $\{ \mathsf{t},\mathsf{f}\} $ of classical truth values.
The category of presheaves on a category $\mathcal{C}$ is the category
of functors from $\mathcal{C}^{\mathsf{op}}$ to the category $\mathsf{Sets}$ of sets.
Let $X$ be a set.
Let $X$ be a set.
Co/Completeness. The (posetal) category (associated to) $\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )$ is complete and cocomplete:
Co/Equalisers. Being a posetal category, $\mathcal{P}\webleft (X\webright )$ only has at most one morphisms between any two objects, so co/equalisers are trivial.
Cartesian Closedness. The category $\mathcal{P}\webleft (X\webright )$ is Cartesian closed.
Powersets as Sets of Relations. We have bijections
natural in $X\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.
Interaction With Products I. The map
Interaction With Products II. The map
is an inclusion of sets, natural in $X,Y\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$ with respect to each of the functor structures $\mathcal{P}_{!}$, $\mathcal{P}^{-1}$, and $\mathcal{P}_{*}$ on $\mathcal{P}$ of Proposition 4.4.2.1.1. Moreover, this makes each of $\mathcal{P}_{!}$, $\mathcal{P}^{-1}$, and $\mathcal{P}_{*}$ into a symmetric monoidal functor.
Interaction With Products III. We have an isomorphism
natural in $X,Y\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$ with respect to each of the functor structures $\mathcal{P}_{!}$, $\mathcal{P}^{-1}$, and $\mathcal{P}_{*}$ on $\mathcal{P}$ of Proposition 4.4.2.1.1, where $\otimes $ denotes the tensor product of suplattices of . Moreover, this makes each of $\mathcal{P}_{!}$, $\mathcal{P}^{-1}$, and $\mathcal{P}_{*}$ into a symmetric monoidal functor.
and
where we have used Item 5 of Proposition 4.1.3.1.3.
defined by
for each $S\in \mathcal{P}\webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright )$, where
The rest of the proof is omitted.