Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation.1,2
-
1.
The domain of $R$ is the subset $\operatorname {Dom}(R)$ of $A$ defined by
\[ \operatorname {Dom}(R)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ a\in A\ \middle |\ \begin{aligned} & \text{there exists some $b\in B$}\\ & \text{such that $a\sim _{R}b$}\\ \end{aligned} \right\} . \]