4.1.4 Pullbacks
Let $A$, $B$, and $C$ be sets and let $f\colon A\to C$ and $g\colon B\to C$ be functions.
The pullback of $A$ and $B$ over $C$ along $f$ and $g$ is the pullback of $A$ and $B$ over $C$ along $f$ and $g$ in $\mathsf{Sets}$ as in
,
.
Concretely, the pullback of $A$ and $B$ over $C$ along $f$ and $g$ is the pair $\webleft (A\times _{C}B,\left\{ \operatorname {\mathrm{\mathrm{pr}}}_{1},\operatorname {\mathrm{\mathrm{pr}}}_{2}\right\} \webright )$ consisting of:
-
1.
The Limit. The set $A\times _{C}B$ defined by
\[ A\times _{C}B\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \webleft (a,b\webright )\in A\times B\ \middle |\ f\webleft (a\webright )=g\webleft (b\webright )\right\} . \]
-
2.
The Cone. The maps
\begin{align*} \operatorname {\mathrm{\mathrm{pr}}}_{1} & \colon A\times _{C}B\to A,\\ \operatorname {\mathrm{\mathrm{pr}}}_{2} & \colon A\times _{C}B\to B \end{align*}
defined by
\begin{align*} \operatorname {\mathrm{\mathrm{pr}}}_{1}\webleft (a,b\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}a,\\ \operatorname {\mathrm{\mathrm{pr}}}_{2}\webleft (a,b\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}b \end{align*}
for each $\webleft (a,b\webright )\in A\times _{C}B$.
We claim that $A\times _{C}B$ is the categorical pullback of $A$ and $B$ over $C$ with respect to $\webleft (f,g\webright )$ in $\mathsf{Sets}$. First we need to check that the relevant pullback diagram commutes, i.e. that we have
Indeed, given $\webleft (a,b\webright )\in A\times _{C}B$, we have
\begin{align*} \webleft [f\circ \operatorname {\mathrm{\mathrm{pr}}}_{1}\webright ]\webleft (a,b\webright ) & = f\webleft (\operatorname {\mathrm{\mathrm{pr}}}_{1}\webleft (a,b\webright )\webright )\\ & = f\webleft (a\webright )\\ & = g\webleft (b\webright )\\ & = g\webleft (\operatorname {\mathrm{\mathrm{pr}}}_{2}\webleft (a,b\webright )\webright )\\ & = \webleft [g\circ \operatorname {\mathrm{\mathrm{pr}}}_{2}\webright ]\webleft (a,b\webright ),\end{align*}
where $f\webleft (a\webright )=g\webleft (b\webright )$ since $\webleft (a,b\webright )\in A\times _{C}B$. Next, we prove that $A\times _{C}B$ satisfies the universal property of the pullback. Suppose we have a diagram of the form
in $\mathsf{Sets}$. Then there exists a unique map $\phi \colon P\to A\times _{C}B$ making the diagram commute, being uniquely determined by the conditions
\begin{align*} \operatorname {\mathrm{\mathrm{pr}}}_{1}\circ \phi & = p_{1},\\ \operatorname {\mathrm{\mathrm{pr}}}_{2}\circ \phi & = p_{2}\end{align*}
via
\[ \phi \webleft (x\webright )=\webleft (p_{1}\webleft (x\webright ),p_{2}\webleft (x\webright )\webright ) \]
for each $x\in P$, where we note that $\webleft (p_{1}\webleft (x\webright ),p_{2}\webleft (x\webright )\webright )\in A\times B$ indeed lies in $A\times _{C}B$ by the condition
\[ f\circ p_{1}=g\circ p_{2}, \]
which gives
\[ f\webleft (p_{1}\webleft (x\webright )\webright )=g\webleft (p_{2}\webleft (x\webright )\webright ) \]
for each $x\in P$, so that $\webleft (p_{1}\webleft (x\webright ),p_{2}\webleft (x\webright )\webright )\in A\times _{C}B$.
Here are some examples of pullbacks of sets.
-
1.
Unions via Intersections. Let $X$ be a set. We have
for each $A,B\in \mathcal{P}\webleft (X\webright )$.
Item 1: Unions via Intersections
Indeed, we have
\begin{align*} A\times _{A\cup B}B & \cong \left\{ \webleft (x,y\webright )\in A\times B\ \middle |\ x=y\right\} \\ & \cong A\cap B. \end{align*}
This finishes the proof.
This is a special case of functoriality of co/limits,
,
of
, with the explicit expression for $\xi $ following from the commutativity of the cube pullback diagram.
This is a repetition of
,
of
, and is proved there.
This follows from the universal property of the product (pullbacks are products in $\mathsf{Sets}_{/X}$).
We have
\begin{align*} \webleft (A\times _{X}B\webright )\times _{Y}C & \cong \left\{ \webleft (\webleft (a,b\webright ),c\webright )\in \webleft (A\times _{X}B\webright )\times C\ \middle |\ h\webleft (b\webright )=k\webleft (c\webright )\right\} \\ & \cong \left\{ \webleft (\webleft (a,b\webright ),c\webright )\in \webleft (A\times B\webright )\times C\ \middle |\ \text{$f\webleft (a\webright )=g\webleft (b\webright )$ and $h\webleft (b\webright )=k\webleft (c\webright )$}\right\} \\ & \cong \left\{ \webleft (a,\webleft (b,c\webright )\webright )\in A\times \webleft (B\times C\webright )\ \middle |\ \text{$f\webleft (a\webright )=g\webleft (b\webright )$ and $h\webleft (b\webright )=k\webleft (c\webright )$}\right\} \\ & \cong \left\{ \webleft (a,\webleft (b,c\webright )\webright )\in A\times \webleft (B\times _{Y}C\webright )\ \middle |\ \text{$f\webleft (a\webright )=g\webleft (b\webright )$}\right\} \\ & \cong A\times _{X}\webleft (B\times _{Y}C\webright ) \end{align*}
and
\begin{align*} \webleft (A\times _{X}B\webright )\times _{B}\webleft (B\times _{Y}C\webright ) & \cong \left\{ \webleft (\webleft (a,b\webright ),\webleft (b',c\webright )\webright )\in \webleft (A\times _{X}B\webright )\times \webleft (B\times _{Y}C\webright )\ \middle |\ b=b'\right\} \\ & \cong \left\{ \webleft (\webleft (a,b\webright ),\webleft (b',c\webright )\webright )\in \webleft (A\times B\webright )\times \webleft (B\times C\webright )\ \middle |\ \begin{aligned} & \text{$f\webleft (a\webright )=g\webleft (b\webright )$, $b=b'$,}\\ & \text{and $h\webleft (b'\webright )=k\webleft (c\webright )$}\end{aligned}\right\} \\ & \cong \left\{ \webleft (a,\webleft (b,\webleft (b',c\webright )\webright )\webright )\in A\times \webleft (B\times \webleft (B\times C\webright )\webright )\ \middle |\ \begin{aligned} & \text{$f\webleft (a\webright )=g\webleft (b\webright )$, $b=b'$,}\\ & \text{and $h\webleft (b'\webright )=k\webleft (c\webright )$}\end{aligned}\right\} \\ & \cong \left\{ \webleft (a,\webleft (\webleft (b,b'\webright ),c\webright )\webright )\in A\times \webleft (\webleft (B\times B\webright )\times C\webright )\ \middle |\ \begin{aligned} & \text{$f\webleft (a\webright )=g\webleft (b\webright )$, $b=b'$,}\\ & \text{and $h\webleft (b'\webright )=k\webleft (c\webright )$}\end{aligned}\right\} \\ & \cong \left\{ \webleft (a,\webleft (\webleft (b,b'\webright ),c\webright )\webright )\in A\times \webleft (\webleft (B\times _{B}B\webright )\times C\webright )\ \middle |\ \begin{aligned} & \text{$f\webleft (a\webright )=g\webleft (b\webright )$ and}\\ & \text{$h\webleft (b'\webright )=k\webleft (c\webright )$}\end{aligned}\right\} \\ & \cong \left\{ \webleft (a,\webleft (b,c\webright )\webright )\in A\times \webleft (B\times C\webright )\ \middle |\ \text{$f\webleft (a\webright )=g\webleft (b\webright )$ and $h\webleft (b\webright )=k\webleft (c\webright )$}\right\} \\ & \cong A\times _{X}\webleft (B\times _{Y}C\webright ), \end{align*}
where we have used Item 6 for the isomorphism $B\times _{B}B\cong B$.
Item 5: Interaction With Composition
By Item 4, it suffices to construct only the isomorphism
\[ X\times ^{f\circ \phi ,g\circ \psi }_{K}Y\cong \webleft (X\times ^{\phi ,q_{1}}_{A}\webleft (A\times ^{f,g}_{K}B\webright )\webright )\times ^{p_{2},p_{1}}_{A\times ^{f,g}_{K}B}\webleft (\webleft (A\times ^{f,g}_{K}B\webright )\times ^{q_{2},\psi }_{B}Y\webright ). \]
We have
so writing
\begin{align*} S & = \webleft (X\times ^{\phi ,q_{1}}_{A}\webleft (A\times ^{f,g}_{K}B\webright )\webright )\\ S' & = \webleft (\webleft (A\times ^{f,g}_{K}B\webright )\times ^{q_{2},\psi }_{B}Y\webright ), \end{align*}
we have
This finishes the proof.
We have
\begin{align*} X\times _{X}A & \cong \left\{ \webleft (x,a\webright )\in X\times A\ \middle |\ f\webleft (a\webright )=x\right\} ,\\ A\times _{X}X & \cong \left\{ \webleft (a,x\webright )\in X\times A\ \middle |\ f\webleft (a\webright )=x\right\} , \end{align*}
which are isomorphic to $A$ via the maps $\webleft (x,a\webright )\mapsto a$ and $\webleft (a,x\webright )\mapsto a$. The proof of the naturality of $\lambda ^{\mathsf{Sets}_{/X}}$ and $\rho ^{\mathsf{Sets}_{/X}}$ is omitted.
We have
\begin{align*} A\times _{C}B & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \webleft (a,b\webright )\in A\times B\ \middle |\ f\webleft (a\webright )=g\webleft (b\webright )\right\} \\ & = \left\{ \webleft (a,b\webright )\in A\times B\ \middle |\ g\webleft (b\webright )=f\webleft (a\webright )\right\} \\ & \cong \left\{ \webleft (b,a\webright )\in B\times A\ \middle |\ g\webleft (b\webright )=f\webleft (a\webright )\right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}B\times _{C}A. \end{align*}
The proof of the naturality of $\sigma ^{\mathsf{Sets}_{/X}}$ is omitted.
Item 8: Distributivity Over Coproducts
We have
\begin{align*} A\times _{X}\webleft (B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \webleft (a,z\webright )\in A\times \webleft (B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C\webright )\ \middle |\ \phi _{A}\webleft (a\webright )=\phi _{B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C}\webleft (z\webright )\right\} \\ & = \left\{ \webleft (a,z\webright )\in A\times \webleft (B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C\webright )\ \middle |\ \text{$z=\webleft (0,b\webright )$ and $\phi _{A}\webleft (a\webright )=\phi _{B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C}\webleft (z\webright )$}\right\} \\ & \phantom{={}} \mkern 4mu\cup \left\{ \webleft (a,z\webright )\in A\times \webleft (B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C\webright )\ \middle |\ \text{$z=\webleft (1,c\webright )$ and $\phi _{A}\webleft (a\webright )=\phi _{B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C}\webleft (z\webright )$}\right\} \\ & = \left\{ \webleft (a,z\webright )\in A\times \webleft (B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C\webright )\ \middle |\ \text{$z=\webleft (0,b\webright )$ and $\phi _{A}\webleft (a\webright )=\phi _{B}\webleft (b\webright )$}\right\} \\ & \phantom{={}} \mkern 4mu\cup \left\{ \webleft (a,z\webright )\in A\times \webleft (B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C\webright )\ \middle |\ \text{$z=\webleft (1,c\webright )$ and $\phi _{A}\webleft (a\webright )=\phi _{C}\webleft (c\webright )$}\right\} \\ & \cong \left\{ \webleft (a,b\webright )\in A\times B\ \middle |\ \phi _{A}\webleft (a\webright )=\phi _{B}\webleft (b\webright )\right\} \\ & \phantom{={}} \mkern 4mu\cup \left\{ \webleft (a,c\webright )\in A\times C\ \middle |\ \phi _{A}\webleft (a\webright )=\phi _{C}\webleft (c\webright )\right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (A\times _{X}B\webright )\cup \webleft (A\times _{X}C\webright )\\ & \cong \webleft (A\times _{X}B\webright )\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\webleft (A\times _{X}C\webright ), \end{align*}
with the construction of the isomorphism
\[ \delta ^{\mathsf{Sets}_{/X}}_{r} \colon \webleft (A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B\webright )\times _{X}C \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\webleft (A\times _{X}C\webright )\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\webleft (B\times _{X}C\webright ) \]
being similar. The proof of the naturality of $\delta ^{\mathsf{Sets}_{/X}}_{\ell }$ and $\delta ^{\mathsf{Sets}_{/X}}_{r}$ is omitted.
Item 9: Annihilation With the Empty Set
We have
\begin{align*} A\times _{X}\text{Ø}& \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \webleft (a,b\webright )\in A\times \text{Ø}\ \middle |\ f\webleft (a\webright )=g\webleft (b\webright )\right\} \\ & = \left\{ k\in \text{Ø}\ \middle |\ f\webleft (a\webright )=g\webleft (b\webright )\right\} \\ & = \text{Ø}, \end{align*}
and similarly for $\text{Ø}\times _{X}A$, where we have used Item 8 of Proposition 4.1.3.1.3. The proof of the naturality of $\zeta ^{\mathsf{Sets}_{/X}}_{\ell }$ and $\zeta ^{\mathsf{Sets}_{/X}}_{r}$ is omitted.
We have
\begin{align*} A\times _{\mathrm{pt}}B & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \webleft (a,b\webright )\in A\times B\ \middle |\ \mathord {!}_{A}\webleft (a\webright )\mathbin {=}\mathord {!}_{B}\webleft (b\webright )\right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \webleft (a,b\webright )\in A\times B\ \middle |\ \star =\star \right\} \\ & = \left\{ \webleft (a,b\webright )\in A\times B\right\} \\ & = A\times B. \end{align*}
Omitted.