4.1.4 Pullbacks

    Let $A$, $B$, and $C$ be sets and let $f\colon A\to C$ and $g\colon B\to C$ be functions.

    The pullback of $A$ and $B$ over $C$ along $f$ and $g$1 is the pullback of $A$ and $B$ over $C$ along $f$ and $g$ in $\mathsf{Sets}$ as in Unresolved reference, Unresolved reference.


    1. 1Further Terminology: Also called the fibre product of $A$ and $B$ over $C$ along $f$ and $g$.

    Concretely, the pullback of $A$ and $B$ over $C$ along $f$ and $g$ is the pair $(A\times _{C}B,\left\{ \operatorname {\mathrm{\mathrm{pr}}}_{1},\operatorname {\mathrm{\mathrm{pr}}}_{2}\right\} )$ consisting of:

  • 1.

    The Limit. The set $A\times _{C}B$ defined by

    \[ A\times _{C}B\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (a,b)\in A\times B\ \middle |\ f(a)=g(b)\right\} . \]
  • 2.

    The Cone. The maps1

    \begin{align*} \operatorname {\mathrm{\mathrm{pr}}}_{1} & \colon A\times _{C}B\to A,\\ \operatorname {\mathrm{\mathrm{pr}}}_{2} & \colon A\times _{C}B\to B \end{align*}

    defined by

    \begin{align*} \operatorname {\mathrm{\mathrm{pr}}}_{1}(a,b) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}a,\\ \operatorname {\mathrm{\mathrm{pr}}}_{2}(a,b) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}b \end{align*}

    for each $(a,b)\in A\times _{C}B$.


    1. 1Further Notation: Also written $\operatorname {\mathrm{\mathrm{pr}}}^{A\times _{C}B}_{1}$ and $\operatorname {\mathrm{\mathrm{pr}}}^{A\times _{C}B}_{2}$.

    We claim that $A\times _{C}B$ is the categorical pullback of $A$ and $B$ over $C$ with respect to $(f,g)$ in $\mathsf{Sets}$. First we need to check that the relevant pullback diagram commutes, i.e. that we have

    Indeed, given $(a,b)\in A\times _{C}B$, we have

    \begin{align*} [f\circ \operatorname {\mathrm{\mathrm{pr}}}_{1}](a,b) & = f(\operatorname {\mathrm{\mathrm{pr}}}_{1}(a,b))\\ & = f(a)\\ & = g(b)\\ & = g(\operatorname {\mathrm{\mathrm{pr}}}_{2}(a,b))\\ & = [g\circ \operatorname {\mathrm{\mathrm{pr}}}_{2}](a,b),\end{align*}

    where $f(a)=g(b)$ since $(a,b)\in A\times _{C}B$. Next, we prove that $A\times _{C}B$ satisfies the universal property of the pullback. Suppose we have a diagram of the form

    in $\mathsf{Sets}$. Then there exists a unique map $\phi \colon P\to A\times _{C}B$ making the diagram
    commute, being uniquely determined by the conditions

    \begin{align*} \operatorname {\mathrm{\mathrm{pr}}}_{1}\circ \phi & = p_{1},\\ \operatorname {\mathrm{\mathrm{pr}}}_{2}\circ \phi & = p_{2}\end{align*}

    via

    \[ \phi (x)=(p_{1}(x),p_{2}(x)) \]

    for each $x\in P$, where we note that $(p_{1}(x),p_{2}(x))\in A\times B$ indeed lies in $A\times _{C}B$ by the condition

    \[ f\circ p_{1}=g\circ p_{2}, \]

    which gives

    \[ f(p_{1}(x))=g(p_{2}(x)) \]

    for each $x\in P$, so that $(p_{1}(x),p_{2}(x))\in A\times _{C}B$.

    It is common practice to write $A\times _{C}B$ for the pullback of $A$ and $B$ over $C$ along $f$ and $g$, omitting the maps $f$ and $g$ from the notation and instead leaving them implicit, to be understood from the context.

    However, the set $A\times _{C}B$ depends very much on the maps $f$ and $g$, and sometimes it is necessary or useful to note this dependence explicitly. In such situations, we will write $A\times _{f,C,g}B$ or $A\times ^{f,g}_{C}B$ for $A\times _{C}B$.

    Here are some examples of pullbacks of sets.

    1. 1.

      Unions via Intersections. Let $X$ be a set. We have

      for each $A,B\in \mathcal{P}(X)$.

    Item 1: Unions via Intersections
    Indeed, we have

    \begin{align*} A\times _{A\cup B}B & \cong \left\{ (x,y)\in A\times B\ \middle |\ x=y\right\} \\ & \cong A\cap B. \end{align*}

    This finishes the proof.

    Let $A$, $B$, $C$, and $X$ be sets.

    1. 1.

      Functoriality. The assignment $(A,B,C,f,g)\mapsto A\times _{f,C,g}B$ defines a functor

      \[ -_{1}\times _{-_{3}}-_{1}\colon \mathsf{Fun}(\mathcal{P},\mathsf{Sets})\to \mathsf{Sets}, \]

      where $\mathcal{P}$ is the category that looks like this:

      In particular, the action on morphisms of $-_{1}\times _{-_{3}}-_{1}$ is given by sending a morphism
      in $\mathsf{Fun}(\mathcal{P},\mathsf{Sets})$ to the map $\xi \colon A\times _{C}B\overset {\exists !}{\to }A'\times _{C'}B'$ given by

      \[ \xi (a,b)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(\phi (a),\psi (b)) \]

      for each $(a,b)\in A\times _{C}B$, which is the unique map making the diagram

      commute.

    2. 2.

      Adjointness I. We have adjunctions

      witnessed by bijections

      \begin{align*} \mathsf{Sets}_{/X}(A\times _{X}B,C) & \cong \mathsf{Sets}_{/X}(A,\boldsymbol {\mathsf{Sets}}_{/X}(B,C)),\\ \mathsf{Sets}_{/X}(A\times _{X}B,C) & \cong \mathsf{Sets}_{/X}(B,\boldsymbol {\mathsf{Sets}}_{/X}(A,C)), \end{align*}

      natural in $(A,\phi _{A}),(B,\phi _{B}),(C,\phi _{C})\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{/X})$, where $\boldsymbol {\mathsf{Sets}}_{/X}(A,B)$ is the object of $\mathsf{Sets}_{/X}$ consisting of (see Unresolved reference, Unresolved reference):

      • The Set. The set $\boldsymbol {\mathsf{Sets}}_{/X}(A,B)$ defined by

        \[ \boldsymbol {\mathsf{Sets}}_{/X}(A,B)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\coprod _{x\in X}\mathsf{Sets}(\phi ^{-1}_{A}(x),\phi ^{-1}_{Y}(x)) \]
      • The Map to $X$. The map

        \[ \phi _{\boldsymbol {\mathsf{Sets}}_{/X}(A,B)}\colon \boldsymbol {\mathsf{Sets}}_{/X}(A,B)\to X \]

        defined by

        \[ \phi _{\boldsymbol {\mathsf{Sets}}_{/X}(A,B)}(x,f)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x \]

        for each $(x,f)\in \boldsymbol {\mathsf{Sets}}_{/X}(A,B)$.

    3. 3.

      Adjointness II. We have an adjunction

      witnessed by a bijection

      \[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{/X}\times \mathsf{Sets}_{/X}}((A,A),(B,C))\cong \mathsf{Sets}_{/X}(A,B\times _{X}C), \]

      natural in $A\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{/X})$ and in $(B,C)\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{/X}\times \mathsf{Sets}_{/X})$.

    4. 4.

      Associativity. Given a diagram

      in $\mathsf{Sets}$, we have isomorphisms of sets

      \[ (A\times _{X}B)\times _{Y}C\cong (A\times _{X}B)\times _{B}(B\times _{Y}C) \cong A\times _{X}(B\times _{Y}C), \]

      where these pullbacks are built as in the diagrams

    5. 5.

      Interaction With Composition. Given a diagram

      in $\mathsf{Sets}$, we have isomorphisms of sets

      \begin{align*} X\times ^{f\circ \phi ,g\circ \psi }_{K}Y & \cong (X\times ^{\phi ,q_{1}}_{A}(A\times ^{f,g}_{K}B))\times ^{p_{2},p_{1}}_{A\times ^{f,g}_{K}B}((A\times ^{f,g}_{K}B)\times ^{q_{2},\psi }_{B}Y)\\ & \cong X\times ^{\phi ,p}_{A}((A\times ^{f,g}_{K}B)\times ^{q_{2},\psi }_{B}Y)\\ & \cong (X\times ^{\phi ,q_{1}}_{A}(A\times ^{f,g}_{K}B))\times ^{q,\psi }_{B}Y \end{align*}

      where

      \[ \begin{aligned} q_{1} & = \operatorname {\mathrm{\mathrm{pr}}}^{A\times ^{f,g}_{K}B}_{1},\\ p_{1} & = \operatorname {\mathrm{\mathrm{pr}}}^{(A\times ^{f,g}_{K}B)\times ^{q_{2},\psi }_{Y}}_{1},\\ p & = q_{1}\circ \operatorname {\mathrm{\mathrm{pr}}}^{(A\times ^{f,g}_{K}B)\times ^{q_{2},\psi }_{B}Y}_{1}, \end{aligned} \qquad \begin{aligned} q_{2} & = \operatorname {\mathrm{\mathrm{pr}}}^{A\times ^{f,g}_{K}B}_{2},\\ p_{2} & = \operatorname {\mathrm{\mathrm{pr}}}^{X\times ^{\phi ,q_{1}}_{A\times ^{f,g}_{K}B}(A\times ^{f,g}_{K}B)}_{2},\\ q & = q_{2}\circ \operatorname {\mathrm{\mathrm{pr}}}^{X\times ^{\phi ,q_{1}}_{A}(A\times ^{f,g}_{K}B)}_{2}, \end{aligned} \]

      and where these pullbacks are built as in the following diagrams:

    6. 6.

      Unitality. We have isomorphisms of sets

      natural in $(A,f)\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{/X})$.

    7. 7.

      Commutativity. We have an isomorphism of sets

      natural in $(A,f),(B,g)\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{/X})$.

    8. 8.

      Distributivity Over Coproducts. Let $A$, $B$, and $C$ be sets and let $\phi _{A}\colon A\to X$, $\phi _{B}\colon B\to X$, and $\phi _{C}\colon C\to X$ be morphisms of sets. We have isomorphisms of sets

      \begin{align*} \delta ^{\mathsf{Sets}_{/X}}_{\ell } & \colon A\times _{X}(B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C) \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }(A\times _{X}B)\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}(A\times _{X}C),\\ \delta ^{\mathsf{Sets}_{/X}}_{r} & \colon (A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B)\times _{X}C \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }(A\times _{X}C)\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}(B\times _{X}C), \end{align*}

      as in the diagrams

      natural in $A,B,C\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{/X})$.

    9. 9.

      Annihilation With the Empty Set. We have isomorphisms of sets

      natural in $(A,f)\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{/X})$.

    10. 10.

      Interaction With Products. We have an isomorphism of sets

    11. 11.

      Symmetric Monoidality. The 8-tuple $\left(\mathrlap {\phantom{\lambda ^{\mathsf{Sets}_{/X}}}}\mathsf{Sets}_{/X}\right.$, $\times _{X}$, $X$, $\boldsymbol {\mathsf{Sets}}_{/X}$, $\alpha ^{\mathsf{Sets}_{/X}}$, $\lambda ^{\mathsf{Sets}_{/X}}$, $\rho ^{\mathsf{Sets}_{/X}}$, $\left.\sigma ^{\mathsf{Sets}_{/X}}\right)$ is a symmetric closed monoidal category.

    Item 1: Functoriality
    This is a special case of functoriality of co/limits, Unresolved reference, Unresolved reference of Unresolved reference, with the explicit expression for $\xi $ following from the commutativity of the cube pullback diagram.

    Item 2: Adjointness I
    This is a repetition of Unresolved reference, Unresolved reference of Unresolved reference, and is proved there.

    Item 3: Adjointness II
    This follows from the universal property of the product (pullbacks are products in $\mathsf{Sets}_{/X}$).

    Item 4: Associativity
    We have
    \begin{align*} (A\times _{X}B)\times _{Y}C & \cong \left\{ ((a,b),c)\in (A\times _{X}B)\times C\ \middle |\ h(b)=k(c)\right\} \\ & \cong \left\{ ((a,b),c)\in (A\times B)\times C\ \middle |\ \text{$f(a)=g(b)$ and $h(b)=k(c)$}\right\} \\ & \cong \left\{ (a,(b,c))\in A\times (B\times C)\ \middle |\ \text{$f(a)=g(b)$ and $h(b)=k(c)$}\right\} \\ & \cong \left\{ (a,(b,c))\in A\times (B\times _{Y}C)\ \middle |\ \text{$f(a)=g(b)$}\right\} \\ & \cong A\times _{X}(B\times _{Y}C) \end{align*}
    and
    \begin{align*} (A\times _{X}B)\times _{B}(B\times _{Y}C) & \cong \left\{ ((a,b),(b',c))\in (A\times _{X}B)\times (B\times _{Y}C)\ \middle |\ b=b'\right\} \\ & \cong \left\{ ((a,b),(b',c))\in (A\times B)\times (B\times C)\ \middle |\ \begin{aligned} & \text{$f(a)=g(b)$, $b=b'$,}\\ & \text{and $h(b')=k(c)$}\end{aligned}\right\} \\ & \cong \left\{ (a,(b,(b',c)))\in A\times (B\times (B\times C))\ \middle |\ \begin{aligned} & \text{$f(a)=g(b)$, $b=b'$,}\\ & \text{and $h(b')=k(c)$}\end{aligned}\right\} \\ & \cong \left\{ (a,((b,b'),c))\in A\times ((B\times B)\times C)\ \middle |\ \begin{aligned} & \text{$f(a)=g(b)$, $b=b'$,}\\ & \text{and $h(b')=k(c)$}\end{aligned}\right\} \\ & \cong \left\{ (a,((b,b'),c))\in A\times ((B\times _{B}B)\times C)\ \middle |\ \begin{aligned} & \text{$f(a)=g(b)$ and}\\ & \text{$h(b')=k(c)$}\end{aligned}\right\} \\ & \cong \left\{ (a,(b,c))\in A\times (B\times C)\ \middle |\ \text{$f(a)=g(b)$ and $h(b)=k(c)$}\right\} \\ & \cong A\times _{X}(B\times _{Y}C), \end{align*}
    where we have used Item 6 for the isomorphism $B\times _{B}B\cong B$.

    Item 5: Interaction With Composition
    By Item 4, it suffices to construct only the isomorphism

    \[ X\times ^{f\circ \phi ,g\circ \psi }_{K}Y\cong (X\times ^{\phi ,q_{1}}_{A}(A\times ^{f,g}_{K}B))\times ^{p_{2},p_{1}}_{A\times ^{f,g}_{K}B}((A\times ^{f,g}_{K}B)\times ^{q_{2},\psi }_{B}Y). \]

    We have

    \begin{align*} (X\times ^{\phi ,q_{1}}_{A}(A\times ^{f,g}_{K}B)) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (x,(a,b))\in X\times (A\times ^{f,g}_{K}B)\ \middle |\ \phi (x)=q_{1}(a,b)\right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (x,(a,b))\in X\times (A\times ^{f,g}_{K}B)\ \middle |\ \phi (x)=a\right\} \\ & \cong \left\{ (x,(a,b))\in X\times (A\times B)\ \middle |\ \text{$\phi (x)=a$ and $f(a)=g(b)$}\right\} ,\\ ((A\times ^{f,g}_{K}B)\times ^{q_{2},\psi }_{B}Y) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ ((a,b),y)\in (A\times ^{f,g}_{K}B)\times Y\ \middle |\ q_{2}(a,b)=\psi (y)\right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ ((a,b),y)\in (A\times ^{f,g}_{K}B)\times Y\ \middle |\ b=\psi (y)\right\} \\ & \cong \left\{ ((a,b),y)\in (A\times B)\times Y\ \middle |\ \text{$b=\psi (y)$ and $f(a)=g(b)$}\right\} ,\end{align*}
    so writing

    \begin{align*} S & = (X\times ^{\phi ,q_{1}}_{A}(A\times ^{f,g}_{K}B))\\ S' & = ((A\times ^{f,g}_{K}B)\times ^{q_{2},\psi }_{B}Y), \end{align*}

    we have

    \begin{align*} S\times ^{p_{2},p_{1}}_{A\times ^{f,g}_{K}B}S' & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ ((x,(a,b)),((a',b'),y))\in S\times S'\ \middle |\ p_{1}(x,(a,b))=p_{2}((a',b'),y)\right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ ((x,(a,b)),((a',b'),y))\in S\times S'\ \middle |\ (a,b)=(a',b')\right\} \\ & \cong \left\{ ((x,a,b,y))\in X\times A\times B\times Y\ \middle |\ \text{$\phi (x)=a$, $\psi (y)=b$, and $f(a)=g(b)$}\right\} \\ & \cong \left\{ ((x,a,b,y))\in X\times A\times B\times Y\ \middle |\ f(\phi (x))=g(\psi (y))\right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\times _{K}Y. \end{align*}
    This finishes the proof.

    Item 6: Unitality
    We have

    \begin{align*} X\times _{X}A & \cong \left\{ (x,a)\in X\times A\ \middle |\ f(a)=x\right\} ,\\ A\times _{X}X & \cong \left\{ (a,x)\in X\times A\ \middle |\ f(a)=x\right\} , \end{align*}

    which are isomorphic to $A$ via the maps $(x,a)\mapsto a$ and $(a,x)\mapsto a$. The proof of the naturality of $\lambda ^{\mathsf{Sets}_{/X}}$ and $\rho ^{\mathsf{Sets}_{/X}}$ is omitted.

    Item 7: Commutativity
    We have

    \begin{align*} A\times _{C}B & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (a,b)\in A\times B\ \middle |\ f(a)=g(b)\right\} \\ & = \left\{ (a,b)\in A\times B\ \middle |\ g(b)=f(a)\right\} \\ & \cong \left\{ (b,a)\in B\times A\ \middle |\ g(b)=f(a)\right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}B\times _{C}A. \end{align*}

    The proof of the naturality of $\sigma ^{\mathsf{Sets}_{/X}}$ is omitted.

    Item 8: Distributivity Over Coproducts
    We have
    \begin{align*} A\times _{X}(B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (a,z)\in A\times (B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C)\ \middle |\ \phi _{A}(a)=\phi _{B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C}(z)\right\} \\ & = \left\{ (a,z)\in A\times (B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C)\ \middle |\ \text{$z=(0,b)$ and $\phi _{A}(a)=\phi _{B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C}(z)$}\right\} \\ & \phantom{={}} \mkern 4mu\cup \left\{ (a,z)\in A\times (B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C)\ \middle |\ \text{$z=(1,c)$ and $\phi _{A}(a)=\phi _{B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C}(z)$}\right\} \\ & = \left\{ (a,z)\in A\times (B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C)\ \middle |\ \text{$z=(0,b)$ and $\phi _{A}(a)=\phi _{B}(b)$}\right\} \\ & \phantom{={}} \mkern 4mu\cup \left\{ (a,z)\in A\times (B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C)\ \middle |\ \text{$z=(1,c)$ and $\phi _{A}(a)=\phi _{C}(c)$}\right\} \\ & \cong \left\{ (a,b)\in A\times B\ \middle |\ \phi _{A}(a)=\phi _{B}(b)\right\} \\ & \phantom{={}} \mkern 4mu\cup \left\{ (a,c)\in A\times C\ \middle |\ \phi _{A}(a)=\phi _{C}(c)\right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(A\times _{X}B)\cup (A\times _{X}C)\\ & \cong (A\times _{X}B)\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}(A\times _{X}C), \end{align*}
    with the construction of the isomorphism

    \[ \delta ^{\mathsf{Sets}_{/X}}_{r} \colon (A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B)\times _{X}C \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }(A\times _{X}C)\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}(B\times _{X}C) \]

    being similar. The proof of the naturality of $\delta ^{\mathsf{Sets}_{/X}}_{\ell }$ and $\delta ^{\mathsf{Sets}_{/X}}_{r}$ is omitted.

    Item 9: Annihilation With the Empty Set
    We have

    \begin{align*} A\times _{X}\text{Ø}& \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (a,b)\in A\times \text{Ø}\ \middle |\ f(a)=g(b)\right\} \\ & = \left\{ k\in \text{Ø}\ \middle |\ f(a)=g(b)\right\} \\ & = \text{Ø}, \end{align*}

    and similarly for $\text{Ø}\times _{X}A$, where we have used Item 8 of Proposition 4.1.3.1.3. The proof of the naturality of $\zeta ^{\mathsf{Sets}_{/X}}_{\ell }$ and $\zeta ^{\mathsf{Sets}_{/X}}_{r}$ is omitted.

    Item 10: Interaction With Products
    We have

    \begin{align*} A\times _{\mathrm{pt}}B & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (a,b)\in A\times B\ \middle |\ \mathord {!}_{A}(a)\mathbin {=}\mathord {!}_{B}(b)\right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (a,b)\in A\times B\ \middle |\ \star =\star \right\} \\ & = \left\{ (a,b)\in A\times B\right\} \\ & = A\times B. \end{align*}

    Item 11: Symmetric Monoidality
    Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: