4.1.5 Equalisers

    Let $A$ and $B$ be sets and let $f,g\colon A\rightrightarrows B$ be functions.

    The equaliser of $f$ and $g$ is the equaliser of $f$ and $g$ in $\mathsf{Sets}$ as in Unresolved reference, Unresolved reference.

    Concretely, the equaliser of $f$ and $g$ is the pair $(\operatorname {\mathrm{Eq}}(f,g),\operatorname {\mathrm{eq}}(f,g))$ consisting of:

    1. 1.

      The Limit. The set $\operatorname {\mathrm{Eq}}(f,g)$ defined by

      \[ \operatorname {\mathrm{Eq}}(f,g)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ a\in A\ \middle |\ f(a)=g(a)\right\} . \]
    2. 2.

      The Cone. The inclusion map

      \[ \operatorname {\mathrm{eq}}(f,g)\colon \operatorname {\mathrm{Eq}}(f,g)\hookrightarrow A. \]

    We claim that $\operatorname {\mathrm{Eq}}(f,g)$ is the categorical equaliser of $f$ and $g$ in $\mathsf{Sets}$. First we need to check that the relevant equaliser diagram commutes, i.e. that we have

    \[ f\circ \operatorname {\mathrm{eq}}(f,g)=g\circ \operatorname {\mathrm{eq}}(f,g), \]

    which indeed holds by the definition of the set $\operatorname {\mathrm{Eq}}(f,g)$. Next, we prove that $\operatorname {\mathrm{Eq}}(f,g)$ satisfies the universal property of the equaliser. Suppose we have a diagram of the form

    in $\mathsf{Sets}$. Then there exists a unique map $\phi \colon E\to \operatorname {\mathrm{Eq}}(f,g)$ making the diagram
    commute, being uniquely determined by the condition

    \[ \operatorname {\mathrm{eq}}(f,g)\circ \phi =e \]

    via

    \[ \phi (x)=e(x) \]

    for each $x\in E$, where we note that $e(x)\in A$ indeed lies in $\operatorname {\mathrm{Eq}}(f,g)$ by the condition

    \[ f\circ e=g\circ e, \]

    which gives

    \[ f(e(x))=g(e(x)) \]

    for each $x\in E$, so that $e(x)\in \operatorname {\mathrm{Eq}}(f,g)$.

    Let $A$, $B$, and $C$ be sets.

    1. 1.

      Associativity. We have isomorphisms of sets1

      \[ \underbrace{\operatorname {\mathrm{Eq}}(f\circ \operatorname {\mathrm{eq}}(g,h),g\circ \operatorname {\mathrm{eq}}(g,h))}_{{}=\operatorname {\mathrm{Eq}}(f\circ \operatorname {\mathrm{eq}}(g,h),h\circ \operatorname {\mathrm{eq}}(g,h))}\cong \operatorname {\mathrm{Eq}}(f,g,h) \cong \underbrace{\operatorname {\mathrm{Eq}}(f\circ \operatorname {\mathrm{eq}}(f,g),h\circ \operatorname {\mathrm{eq}}(f,g))}_{{}=\operatorname {\mathrm{Eq}}(g\circ \operatorname {\mathrm{eq}}(f,g),h\circ \operatorname {\mathrm{eq}}(f,g))}, \]
      where $\operatorname {\mathrm{Eq}}(f,g,h)$ is the limit of the diagram
      in $\mathsf{Sets}$, being explicitly given by

      \[ \operatorname {\mathrm{Eq}}(f,g,h)\cong \left\{ a\in A\ \middle |\ f(a)=g(a)=h(a)\right\} . \]
    2. 2.

      Unitality. We have an isomorphism of sets

      \[ \operatorname {\mathrm{Eq}}(f,f)\cong A. \]
    3. 3.

      Commutativity. We have an isomorphism of sets

      \[ \operatorname {\mathrm{Eq}}(f,g) \cong \operatorname {\mathrm{Eq}}(g,f). \]
  • 4.

    Interaction With Composition. Let

    \[ A \underset {g}{\overset {f}{\rightrightarrows }} B \underset {k}{\overset {h}{\rightrightarrows }} C \]

    be functions. We have an inclusion of sets

    \[ \operatorname {\mathrm{Eq}}(h\circ f\circ \operatorname {\mathrm{eq}}(f,g),k\circ g\circ \operatorname {\mathrm{eq}}(f,g)) \subset \operatorname {\mathrm{Eq}}(h\circ f,k\circ g), \]

    where $\operatorname {\mathrm{Eq}}(h\circ f\circ \operatorname {\mathrm{eq}}(f,g),k\circ g\circ \operatorname {\mathrm{eq}}(f,g))$ is the equaliser of the composition

    \[ \operatorname {\mathrm{Eq}}(f,g)\overset {\operatorname {\mathrm{eq}}(f,g)}{\hookrightarrow }A\underset {g}{\overset {f}{\rightrightarrows }}B\underset {k}{\overset {h}{\rightrightarrows }}C. \]

    1. 1That is, the following three ways of forming “the” equaliser of $(f,g,h)$ agree:
      1. (a)

        Take the equaliser of $(f,g,h)$, i.e. the limit of the diagram

        in $\mathsf{Sets}$.

      2. (b)

        First take the equaliser of $f$ and $g$, forming a diagram

        \[ \operatorname {\mathrm{Eq}}(f,g)\overset {\operatorname {\mathrm{eq}}(f,g)}{\hookrightarrow }A\underset {g}{\overset {f}{\rightrightarrows }}B \]

        and then take the equaliser of the composition

        \[ \operatorname {\mathrm{Eq}}(f,g)\overset {\operatorname {\mathrm{eq}}(f,g)}{\hookrightarrow }A\underset {h}{\overset {f}{\rightrightarrows }}B, \]

        obtaining a subset

        \[ \operatorname {\mathrm{Eq}}(f\circ \operatorname {\mathrm{eq}}(f,g),h\circ \operatorname {\mathrm{eq}}(f,g))=\operatorname {\mathrm{Eq}}(g\circ \operatorname {\mathrm{eq}}(f,g),h\circ \operatorname {\mathrm{eq}}(f,g)) \]

        of $\operatorname {\mathrm{Eq}}(f,g)$.

      3. (c)

        First take the equaliser of $g$ and $h$, forming a diagram

        \[ \operatorname {\mathrm{Eq}}(g,h)\overset {\operatorname {\mathrm{eq}}(g,h)}{\hookrightarrow }A\underset {h}{\overset {g}{\rightrightarrows }}B \]

        and then take the equaliser of the composition

        \[ \operatorname {\mathrm{Eq}}(g,h)\overset {\operatorname {\mathrm{eq}}(g,h)}{\hookrightarrow }A\underset {g}{\overset {f}{\rightrightarrows }}B, \]

        obtaining a subset

        \[ \operatorname {\mathrm{Eq}}(f\circ \operatorname {\mathrm{eq}}(g,h),g\circ \operatorname {\mathrm{eq}}(g,h))=\operatorname {\mathrm{Eq}}(f\circ \operatorname {\mathrm{eq}}(g,h),h\circ \operatorname {\mathrm{eq}}(g,h)) \]

        of $\operatorname {\mathrm{Eq}}(g,h)$.

    Item 1: Associativity
    We first prove that $\operatorname {\mathrm{Eq}}(f,g,h)$ is indeed given by

    \[ \operatorname {\mathrm{Eq}}(f,g,h)\cong \left\{ a\in A\ \middle |\ f(a)=g(a)=h(a)\right\} . \]

    Indeed, suppose we have a diagram of the form

    in $\mathsf{Sets}$. Then there exists a unique map $\phi \colon E\to \operatorname {\mathrm{Eq}}(f,g,h)$, uniquely determined by the condition

    \[ \operatorname {\mathrm{eq}}(f,g)\circ \phi =e \]

    being necessarily given by

    \[ \phi (x)=e(x) \]

    for each $x\in E$, where we note that $e(x)\in A$ indeed lies in $\operatorname {\mathrm{Eq}}(f,g,h)$ by the condition

    \[ f\circ e=g\circ e=h\circ e, \]

    which gives

    \[ f(e(x))=g(e(x))=h(e(x)) \]

    for each $x\in E$, so that $e(x)\in \operatorname {\mathrm{Eq}}(f,g,h)$.

    We now check the equalities

    \[ \operatorname {\mathrm{Eq}}(f\circ \operatorname {\mathrm{eq}}(g,h),g\circ \operatorname {\mathrm{eq}}(g,h))\cong \operatorname {\mathrm{Eq}}(f,g,h) \cong \operatorname {\mathrm{Eq}}(f\circ \operatorname {\mathrm{eq}}(f,g),h\circ \operatorname {\mathrm{eq}}(f,g)). \]

    Indeed, we have

    \begin{align*} \operatorname {\mathrm{Eq}}(f\circ \operatorname {\mathrm{eq}}(g,h),g\circ \operatorname {\mathrm{eq}}(g,h)) & \cong \left\{ x\in \operatorname {\mathrm{Eq}}(g,h)\ \middle |\ [f\circ \operatorname {\mathrm{eq}}(g,h)](a)=[g\circ \operatorname {\mathrm{eq}}(g,h)](a)\right\} \\ & \cong \left\{ x\in \operatorname {\mathrm{Eq}}(g,h)\ \middle |\ f(a)=g(a)\right\} \\ & \cong \left\{ x\in A\ \middle |\ \text{$f(a)=g(a)$ and $g(a)=h(a)$}\right\} \\ & \cong \left\{ x\in A\ \middle |\ \text{$f(a)=g(a)=h(a)$}\right\} \\ & \cong \operatorname {\mathrm{Eq}}(f,g,h).\end{align*}
    Similarly, we have
    \begin{align*} \operatorname {\mathrm{Eq}}(f\circ \operatorname {\mathrm{eq}}(f,g),h\circ \operatorname {\mathrm{eq}}(f,g)) & \cong \left\{ x\in \operatorname {\mathrm{Eq}}(f,g)\ \middle |\ [f\circ \operatorname {\mathrm{eq}}(f,g)](a)=[h\circ \operatorname {\mathrm{eq}}(f,g)](a)\right\} \\ & \cong \left\{ x\in \operatorname {\mathrm{Eq}}(f,g)\ \middle |\ f(a)=h(a)\right\} \\ & \cong \left\{ x\in A\ \middle |\ \text{$f(a)=h(a)$ and $f(a)=g(a)$}\right\} \\ & \cong \left\{ x\in A\ \middle |\ \text{$f(a)=g(a)=h(a)$}\right\} \\ & \cong \operatorname {\mathrm{Eq}}(f,g,h).\end{align*}

    Item 2: Unitality
    Indeed, we have

    \begin{align*} \operatorname {\mathrm{Eq}}(f,f) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ a\in A\ \middle |\ f(a)=f(a)\right\} \\ & = A. \end{align*}

    Item 3: Commutativity
    Indeed, we have

    \begin{align*} \operatorname {\mathrm{Eq}}(f,g) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ a\in A\ \middle |\ f(a)=g(a)\right\} \\ & = \left\{ a\in A\ \middle |\ g(a)=f(a)\right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{Eq}}(g,f). \end{align*}

    Item 4: Interaction With Composition
    Indeed, we have
    \begin{align*} \operatorname {\mathrm{Eq}}(h\circ f\circ \operatorname {\mathrm{eq}}(f,g),k\circ g\circ \operatorname {\mathrm{eq}}(f,g)) & \cong \left\{ a\in \operatorname {\mathrm{Eq}}(f,g)\ \middle |\ h(f(a))=k(g(a))\right\} \\ & \cong \left\{ a\in A\ \middle |\ \text{$f(a)=g(a)$ and $h(f(a))=k(g(a))$}\right\} .\end{align*}
    and

    \[ \operatorname {\mathrm{Eq}}(h\circ f,k\circ g)\cong \left\{ a\in A\ \middle |\ h(f(a))=k(g(a))\right\} , \]

    and thus there’s an inclusion from $\operatorname {\mathrm{Eq}}(h\circ f\circ \operatorname {\mathrm{eq}}(f,g),k\circ g\circ \operatorname {\mathrm{eq}}(f,g))$ to $\operatorname {\mathrm{Eq}}(h\circ f,k\circ g)$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: