The equaliser of $f$ and $g$ is the equaliser of $f$ and $g$ in $\mathsf{Sets}$ as in ,
.
4.1.5 Equalisers
Let $A$ and $B$ be sets and let $f,g\colon A\rightrightarrows B$ be functions.
Concretely, the equaliser of $f$ and $g$ is the pair $\webleft (\operatorname {\mathrm{Eq}}\webleft (f,g\webright ),\operatorname {\mathrm{eq}}\webleft (f,g\webright )\webright )$ consisting of:
-
1.
The Limit. The set $\operatorname {\mathrm{Eq}}\webleft (f,g\webright )$ defined by
\[ \operatorname {\mathrm{Eq}}\webleft (f,g\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ a\in A\ \middle |\ f\webleft (a\webright )=g\webleft (a\webright )\right\} . \] -
2.
The Cone. The inclusion map
\[ \operatorname {\mathrm{eq}}\webleft (f,g\webright )\colon \operatorname {\mathrm{Eq}}\webleft (f,g\webright )\hookrightarrow A. \]
We claim that $\operatorname {\mathrm{Eq}}\webleft (f,g\webright )$ is the categorical equaliser of $f$ and $g$ in $\mathsf{Sets}$. First we need to check that the relevant equaliser diagram commutes, i.e. that we have
which indeed holds by the definition of the set $\operatorname {\mathrm{Eq}}\webleft (f,g\webright )$. Next, we prove that $\operatorname {\mathrm{Eq}}\webleft (f,g\webright )$ satisfies the universal property of the equaliser. Suppose we have a diagram of the form
via
for each $x\in E$, where we note that $e\webleft (x\webright )\in A$ indeed lies in $\operatorname {\mathrm{Eq}}\webleft (f,g\webright )$ by the condition
which gives
for each $x\in E$, so that $e\webleft (x\webright )\in \operatorname {\mathrm{Eq}}\webleft (f,g\webright )$.
Let $A$, $B$, and $C$ be sets.
-
1.
Associativity. We have isomorphisms of sets1
\[ \underbrace{\operatorname {\mathrm{Eq}}\webleft (f\circ \operatorname {\mathrm{eq}}\webleft (g,h\webright ),g\circ \operatorname {\mathrm{eq}}\webleft (g,h\webright )\webright )}_{{}=\operatorname {\mathrm{Eq}}\webleft (f\circ \operatorname {\mathrm{eq}}\webleft (g,h\webright ),h\circ \operatorname {\mathrm{eq}}\webleft (g,h\webright )\webright )}\cong \operatorname {\mathrm{Eq}}\webleft (f,g,h\webright ) \cong \underbrace{\operatorname {\mathrm{Eq}}\webleft (f\circ \operatorname {\mathrm{eq}}\webleft (f,g\webright ),h\circ \operatorname {\mathrm{eq}}\webleft (f,g\webright )\webright )}_{{}=\operatorname {\mathrm{Eq}}\webleft (g\circ \operatorname {\mathrm{eq}}\webleft (f,g\webright ),h\circ \operatorname {\mathrm{eq}}\webleft (f,g\webright )\webright )}, \]in $\mathsf{Sets}$, being explicitly given by\[ \operatorname {\mathrm{Eq}}\webleft (f,g,h\webright )\cong \left\{ a\in A\ \middle |\ f\webleft (a\webright )=g\webleft (a\webright )=h\webleft (a\webright )\right\} . \] -
2.
Unitality. We have an isomorphism of sets
\[ \operatorname {\mathrm{Eq}}\webleft (f,f\webright )\cong A. \] -
3.
Commutativity. We have an isomorphism of sets
\[ \operatorname {\mathrm{Eq}}\webleft (f,g\webright ) \cong \operatorname {\mathrm{Eq}}\webleft (g,f\webright ). \] -
4.
Interaction With Composition. Let
\[ A \underset {g}{\overset {f}{\rightrightarrows }} B \underset {k}{\overset {h}{\rightrightarrows }} C \]be functions. We have an inclusion of sets
\[ \operatorname {\mathrm{Eq}}\webleft (h\circ f\circ \operatorname {\mathrm{eq}}\webleft (f,g\webright ),k\circ g\circ \operatorname {\mathrm{eq}}\webleft (f,g\webright )\webright ) \subset \operatorname {\mathrm{Eq}}\webleft (h\circ f,k\circ g\webright ), \]where $\operatorname {\mathrm{Eq}}\webleft (h\circ f\circ \operatorname {\mathrm{eq}}\webleft (f,g\webright ),k\circ g\circ \operatorname {\mathrm{eq}}\webleft (f,g\webright )\webright )$ is the equaliser of the composition
\[ \operatorname {\mathrm{Eq}}\webleft (f,g\webright )\overset {\operatorname {\mathrm{eq}}\webleft (f,g\webright )}{\hookrightarrow }A\underset {g}{\overset {f}{\rightrightarrows }}B\underset {k}{\overset {h}{\rightrightarrows }}C. \]
-
1That is, the following three ways of forming “the” equaliser of $\webleft (f,g,h\webright )$ agree:
-
(a)
Take the equaliser of $\webleft (f,g,h\webright )$, i.e. the limit of the diagram
in $\mathsf{Sets}$. -
(b)
First take the equaliser of $f$ and $g$, forming a diagram
\[ \operatorname {\mathrm{Eq}}\webleft (f,g\webright )\overset {\operatorname {\mathrm{eq}}\webleft (f,g\webright )}{\hookrightarrow }A\underset {g}{\overset {f}{\rightrightarrows }}B \]and then take the equaliser of the composition
\[ \operatorname {\mathrm{Eq}}\webleft (f,g\webright )\overset {\operatorname {\mathrm{eq}}\webleft (f,g\webright )}{\hookrightarrow }A\underset {h}{\overset {f}{\rightrightarrows }}B, \]obtaining a subset
\[ \operatorname {\mathrm{Eq}}\webleft (f\circ \operatorname {\mathrm{eq}}\webleft (f,g\webright ),h\circ \operatorname {\mathrm{eq}}\webleft (f,g\webright )\webright )=\operatorname {\mathrm{Eq}}\webleft (g\circ \operatorname {\mathrm{eq}}\webleft (f,g\webright ),h\circ \operatorname {\mathrm{eq}}\webleft (f,g\webright )\webright ) \]of $\operatorname {\mathrm{Eq}}\webleft (f,g\webright )$.
-
(c)
First take the equaliser of $g$ and $h$, forming a diagram
\[ \operatorname {\mathrm{Eq}}\webleft (g,h\webright )\overset {\operatorname {\mathrm{eq}}\webleft (g,h\webright )}{\hookrightarrow }A\underset {h}{\overset {g}{\rightrightarrows }}B \]and then take the equaliser of the composition
\[ \operatorname {\mathrm{Eq}}\webleft (g,h\webright )\overset {\operatorname {\mathrm{eq}}\webleft (g,h\webright )}{\hookrightarrow }A\underset {g}{\overset {f}{\rightrightarrows }}B, \]obtaining a subset
\[ \operatorname {\mathrm{Eq}}\webleft (f\circ \operatorname {\mathrm{eq}}\webleft (g,h\webright ),g\circ \operatorname {\mathrm{eq}}\webleft (g,h\webright )\webright )=\operatorname {\mathrm{Eq}}\webleft (f\circ \operatorname {\mathrm{eq}}\webleft (g,h\webright ),h\circ \operatorname {\mathrm{eq}}\webleft (g,h\webright )\webright ) \]of $\operatorname {\mathrm{Eq}}\webleft (g,h\webright )$.
-
(a)
Indeed, suppose we have a diagram of the form
being necessarily given by
for each $x\in E$, where we note that $e\webleft (x\webright )\in A$ indeed lies in $\operatorname {\mathrm{Eq}}\webleft (f,g,h\webright )$ by the condition
which gives
for each $x\in E$, so that $e\webleft (x\webright )\in \operatorname {\mathrm{Eq}}\webleft (f,g,h\webright )$.
We now check the equalities
Indeed, we have
and thus there’s an inclusion from $\operatorname {\mathrm{Eq}}\webleft (h\circ f\circ \operatorname {\mathrm{eq}}\webleft (f,g\webright ),k\circ g\circ \operatorname {\mathrm{eq}}\webleft (f,g\webright )\webright )$ to $\operatorname {\mathrm{Eq}}\webleft (h\circ f,k\circ g\webright )$.