The coproduct of $A$ and $B$1 is the coproduct of $A$ and $B$ in $\mathsf{Sets}$ as in ,
.
- 1Further Terminology: Also called the disjoint union of $A$ and $B$.
Let $A$ and $B$ be sets.
The coproduct of $A$ and $B$1 is the coproduct of $A$ and $B$ in $\mathsf{Sets}$ as in ,
.
Concretely, the coproduct of $A$ and $B$ is the pair $\webleft (A\coprod B,\left\{ \mathrm{inj}_{1},\mathrm{inj}_{2}\right\} \webright )$ consisting of:
The Colimit. The set $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ defined by
where $S=\left\{ 0,1\right\} \times \webleft (A\cup B\webright )$.
The Cocone. The maps
given by
for each $a\in A$ and each $b\in B$.
We claim that $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ is the categorical coproduct of $A$ and $B$ in $\mathsf{Sets}$. Indeed, suppose we have a diagram of the form
via
for each $x\in A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$.
Let $A$, $B$, $C$, and $X$ be sets.
Functoriality. The assignment $A,B,\webleft (A,B\webright )\mapsto A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ defines functors
where $-_{1}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-_{2}$ is the functor where
Action on Objects. For each $\webleft (A,B\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\times \mathsf{Sets}\webright )$, we have
Action on Morphisms. For each $\webleft (A,B\webright ),\webleft (X,Y\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$, the action on $\operatorname {\mathrm{Hom}}$-sets
of $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$ at $\webleft (\webleft (A,B\webright ),\webleft (X,Y\webright )\webright )$ is defined by sending $\webleft (f,g\webright )$ to the function
defined by
for each $x\in A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$.
and where $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-$ and $-\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ are the partial functors of $-_{1}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-_{2}$ at $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.
Adjointness. We have an adjunction
natural in $\webleft (A,B\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\times \mathsf{Sets}\webright )$ and in $C\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.
Associativity. We have an isomorphism of sets
natural in $X,Y,Z\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.
Unitality. We have isomorphisms of sets
natural in $X\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.
Commutativity. We have an isomorphism of sets
natural in $X,Y\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.
Symmetric Monoidality. The 7-tuple $\left(\phantom{\mathrlap {\alpha ^{\mathsf{Sets}}}}\mathsf{Sets}\right.$, $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$, $\text{Ø}$, $\alpha ^{\mathsf{Sets}}_{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$, $\lambda ^{\mathsf{Sets}}_{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$, $\rho ^{\mathsf{Sets}}_{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$, $\left.\sigma ^{\mathsf{Sets}}\right)$ is a symmetric monoidal category.