4.2.3 Binary Coproducts

    Let $A$ and $B$ be sets.

    The coproduct of $A$ and $B$1 is the coproduct of $A$ and $B$ in $\mathsf{Sets}$ as in Unresolved reference, Unresolved reference.


    1. 1Further Terminology: Also called the disjoint union of $A$ and $B$.

    Concretely, the coproduct of $A$ and $B$ is the pair $\webleft (A\coprod B,\left\{ \mathrm{inj}_{1},\mathrm{inj}_{2}\right\} \webright )$ consisting of:

    1. 1.

      The Colimit. The set $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ defined by

      \begin{align*} A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\coprod _{z\in \left\{ A,B\right\} }z\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \webleft (0,a\webright )\in S\ \middle |\ a\in A\right\} \cup \left\{ \webleft (1,b\webright )\in S\ \middle |\ b\in B\right\} , \end{align*}

      where $S=\left\{ 0,1\right\} \times \webleft (A\cup B\webright )$.

    2. 2.

      The Cocone. The maps

      \begin{align*} \mathrm{inj}_{1} & \colon A \to A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B,\\ \mathrm{inj}_{2} & \colon B \to A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B, \end{align*}

      given by

      \begin{align*} \mathrm{inj}_{1}\webleft (a\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (0,a\webright ),\\ \mathrm{inj}_{2}\webleft (b\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (1,b\webright ), \end{align*}

      for each $a\in A$ and each $b\in B$.

    We claim that $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ is the categorical coproduct of $A$ and $B$ in $\mathsf{Sets}$. Indeed, suppose we have a diagram of the form

    in $\mathsf{Sets}$. Then there exists a unique map $\phi \colon A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B\to C$ making the diagram
    commute, being uniquely determined by the conditions

    \begin{align*} \phi \circ \mathrm{inj}_{A} & = \iota _{A},\\ \phi \circ \mathrm{inj}_{B} & = \iota _{B} \end{align*}

    via

    \[ \phi \webleft (x\webright )=\begin{cases} \iota _{A}\webleft (a\webright ) & \text{if $x=\webleft (0,a\webright )$,}\\ \iota _{B}\webleft (b\webright ) & \text{if $x=\webleft (1,b\webright )$} \end{cases} \]

    for each $x\in A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$.

    Let $A$, $B$, $C$, and $X$ be sets.

    1. 1.

      Functoriality. The assignment $A,B,\webleft (A,B\webright )\mapsto A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ defines functors

      \[ \begin{array}{ccc} A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-\colon \mkern -15mu & \mathsf{Sets} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets},\\ -\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B\colon \mkern -15mu & \mathsf{Sets} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets},\\ -_{1}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-_{2}\colon \mkern -15mu & \mathsf{Sets}\times \mathsf{Sets} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}, \end{array} \]

      where $-_{1}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-_{2}$ is the functor where

      • Action on Objects. For each $\webleft (A,B\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\times \mathsf{Sets}\webright )$, we have

        \[ \webleft [-_{1}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-_{2}\webright ]\webleft (A,B\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B. \]
      • Action on Morphisms. For each $\webleft (A,B\webright ),\webleft (X,Y\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$, the action on $\operatorname {\mathrm{Hom}}$-sets

        \[ \mathbin {\textstyle \coprod _{\webleft (A,B\webright ),\webleft (X,Y\webright )}} \colon \mathsf{Sets}\webleft (A,X\webright )\times \mathsf{Sets}\webleft (B,Y\webright )\to \mathsf{Sets}\webleft (A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B,X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright ) \]

        of $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$ at $\webleft (\webleft (A,B\webright ),\webleft (X,Y\webright )\webright )$ is defined by sending $\webleft (f,g\webright )$ to the function

        \[ f\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g\colon A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B\to X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y \]

        defined by

        \[ \webleft [f\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g\webright ]\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \webleft (0,f\webleft (a\webright )\webright ) & \text{if $x=\webleft (0,a\webright )$,}\\ \webleft (1,g\webleft (b\webright )\webright ) & \text{if $x=\webleft (1,b\webright )$,}\end{cases} \]

        for each $x\in A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$.

      and where $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-$ and $-\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ are the partial functors of $-_{1}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-_{2}$ at $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.

    2. 2.

      Adjointness. We have an adjunction

      witnessed by a bijection

      \[ \mathsf{Sets}\webleft (A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B,C\webright ),\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}\times \mathsf{Sets}}\webleft (\webleft (A,B\webright ),\webleft (C,C\webright )\webright ) \]

      natural in $\webleft (A,B\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\times \mathsf{Sets}\webright )$ and in $C\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.

  • 3.

    Associativity. We have an isomorphism of sets

    \[ \alpha ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{X,Y,Z} \colon \webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright )\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Z \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\webleft (Y\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Z\webright ), \]

    natural in $X,Y,Z\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.

  • 4.

    Unitality. We have isomorphisms of sets

    \begin{align*} \lambda ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{X} & \colon \text{Ø}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}X \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }X,\\ \rho ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{X} & \colon X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\text{Ø}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }X, \end{align*}

    natural in $X\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.

  • 5.

    Commutativity. We have an isomorphism of sets

    \[ \sigma ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{X,Y} \colon X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }Y\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}X, \]

    natural in $X,Y\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.

  • 6.

    Symmetric Monoidality. The 7-tuple $\left(\phantom{\mathrlap {\alpha ^{\mathsf{Sets}}}}\mathsf{Sets}\right.$, $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$, $\text{Ø}$, $\alpha ^{\mathsf{Sets}}_{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$, $\lambda ^{\mathsf{Sets}}_{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$, $\rho ^{\mathsf{Sets}}_{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$, $\left.\sigma ^{\mathsf{Sets}}\right)$ is a symmetric monoidal category.

  • Item 1: Functoriality
    This follows from Unresolved reference, Unresolved reference of Unresolved reference.

    Item 2: Adjointness
    This follows from the universal property of the coproduct.

    Item 3: Associativity
    This is proved in the proof of Chapter 5: Monoidal Structures on the Category of Sets, Definition 5.2.3.1.1.

    Item 4: Unitality
    This is proved in the proof of Chapter 5: Monoidal Structures on the Category of Sets, Definition 5.2.4.1.1 and Definition 5.2.5.1.1.

    Item 5: Commutativity
    This is proved in the proof of Chapter 5: Monoidal Structures on the Category of Sets, Definition 5.2.6.1.1.

    Item 6: Symmetric Monoidality
    This is a repetition of Chapter 5: Monoidal Structures on the Category of Sets, Proposition 5.2.7.1.1, and is proved there.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: