The pushout of $A$ and $B$ over $C$ along $f$ and $g$1 is the pushout of $A$ and $B$ over $C$ along $f$ and $g$ in $\mathsf{Sets}$ as in ,
.
- 1Further Terminology: Also called the fibre coproduct of $A$ and $B$ over $C$ along $f$ and $g$.
Let $A$, $B$, and $C$ be sets and let $f\colon C\to A$ and $g\colon C\to B$ be functions.
The pushout of $A$ and $B$ over $C$ along $f$ and $g$1 is the pushout of $A$ and $B$ over $C$ along $f$ and $g$ in $\mathsf{Sets}$ as in ,
.
Concretely, the pushout of $A$ and $B$ over $C$ along $f$ and $g$ is the pair $\webleft (A\mathbin {\textstyle \coprod _{C}}B,\left\{ \mathrm{inj}_{1},\mathrm{inj}_{2}\right\} \webright )$ consisting of:
The Colimit. The set $A\mathbin {\textstyle \coprod _{C}}B$ defined by
where $\mathord {\sim }_{C}$ is the equivalence relation on $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ generated by $\webleft (0,f\webleft (c\webright )\webright )\sim _{C}\webleft (1,g\webleft (c\webright )\webright )$.
The Cocone. The maps
given by
for each $a\in A$ and each $b\in B$.
We claim that $A\mathbin {\textstyle \coprod _{C}}B$ is the categorical pushout of $A$ and $B$ over $C$ with respect to $\webleft (f,g\webright )$ in $\mathsf{Sets}$. First we need to check that the relevant pushout diagram commutes, i.e. that we have
where $\webleft [\webleft (0,f\webleft (c\webright )\webright )\webright ]=\webleft [\webleft (1,g\webleft (c\webright )\webright )\webright ]$ by the definition of the relation $\mathord {\sim }$ on $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$. Next, we prove that $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}_{C}B$ satisfies the universal property of the pushout. Suppose we have a diagram of the form
via
for each $x\in A\mathbin {\textstyle \coprod _{C}}B$, where the well-definedness of $\phi $ is guaranteed by the equality $\iota _{1}\circ f=\iota _{2}\circ g$ and the definition of the relation $\mathord {\sim }$ on $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ as follows:
Case 1: Suppose we have $x=\webleft [\webleft (0,a\webright )\webright ]=\webleft [\webleft (0,a'\webright )\webright ]$ for some $a,a'\in A$. Then, by Remark 4.2.4.1.3, we have a sequence
Case 2: Suppose we have $x=\webleft [\webleft (1,b\webright )\webright ]=\webleft [\webleft (1,b'\webright )\webright ]$ for some $b,b'\in B$. Then, by Remark 4.2.4.1.3, we have a sequence
Case 3: Suppose we have $x=\webleft [\webleft (0,a\webright )\webright ]=\webleft [\webleft (1,b\webright )\webright ]$ for some $a\in A$ and $b\in B$. Then, by Remark 4.2.4.1.3, we have a sequence
In all these cases, we declare $x\sim 'y$ iff there exists some $c\in C$ such that $x=\webleft (0,f\webleft (c\webright )\webright )$ and $y=\webleft (1,g\webleft (c\webright )\webright )$ or $x=\webleft (1,g\webleft (c\webright )\webright )$ and $y=\webleft (0,f\webleft (c\webright )\webright )$. Then, the equality $\iota _{1}\circ f=\iota _{2}\circ g$ gives
with the case where $x=\webleft (1,g\webleft (c\webright )\webright )$ and $y=\webleft (0,f\webleft (c\webright )\webright )$ similarly giving $\phi \webleft (\webleft [x\webright ]\webright )=\phi \webleft (\webleft [y\webright ]\webright )$. Thus, if $x\sim 'y$, then $\phi \webleft (\webleft [x\webright ]\webright )=\phi \webleft (\webleft [y\webright ]\webright )$. Applying this equality pairwise to the sequences
gives
showing $\phi $ to be well-defined.
In detail, by Chapter 10: Conditions on Relations, Construction 10.5.2.1.2, the relation $\mathord {\sim }$ of Definition 4.2.4.1.1 is given by declaring $a\sim b$ iff one of the following conditions is satisfied:
We have $a,b\in A$ and $a=b$.
We have $a,b\in B$ and $a=b$.
There exist $x_{1},\ldots ,x_{n}\in A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ such that $a\sim 'x_{1}\sim '\cdots \sim 'x_{n}\sim 'b$, where we declare $x\sim 'y$ if one of the following conditions is satisfied:
There exists $c\in C$ such that $x=\webleft (0,f\webleft (c\webright )\webright )$ and $y=\webleft (1,g\webleft (c\webright )\webright )$.
There exists $c\in C$ such that $x=\webleft (1,g\webleft (c\webright )\webright )$ and $y=\webleft (0,f\webleft (c\webright )\webright )$.
In other words, there exist $x_{1},\ldots ,x_{n}\in A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ satisfying the following conditions:
It is common practice to write $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}_{C}B$ for the pushout of $A$ and $B$ over $C$ along $f$ and $g$, omitting the maps $f$ and $g$ from the notation and instead leaving them implicit, to be understood from the context.
However, the set $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}_{C}B$ depends very much on the maps $f$ and $g$, and sometimes it is necessary or useful to note this dependence explicitly. In such situations, we will write $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}_{f,C,g}B$ or $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}^{f,g}_{C}B$ for $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}_{C}B$.
Here are some examples of pushouts of sets.
Wedge Sums of Pointed Sets. The wedge sum of two pointed sets of Chapter 6: Pointed Sets, Definition 6.3.3.1.1 is an example of a pushout of sets.
Intersections via Unions. Let $X$ be a set. We have
Let $A$, $B$, $C$, and $X$ be sets.
Functoriality. The assignment $\webleft (A,B,C,f,g\webright )\mapsto A\mathbin {\textstyle \coprod _{f,C,g}}B$ defines a functor
where $\mathcal{P}$ is the category that looks like this:
for each $x\in A\mathbin {\textstyle \coprod _{C}}B$, which is the unique map making the diagram
Adjointness. We have an adjunction
natural in $\webleft (A,B\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{X/}\times \mathsf{Sets}_{X/}\webright )$ and in $C\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{X/}\webright )$.
Associativity. Given a diagram
where these pullbacks are built as in the diagrams
Interaction With Composition. Given a diagram
where
and where these pullbacks are built as in the diagrams
Unitality. We have isomorphisms of sets
Commutativity. We have an isomorphism of sets
Interaction With Coproducts. We have
Symmetric Monoidality. The triple $\webleft (\mathsf{Sets}_{X/},\mathbin {\textstyle \coprod _{X}},X\webright )$ is a symmetric monoidal category.