The Cocone. The morphisms of pointed sets
\begin{align*} \mathrm{inj}_{1} & \colon \webleft (X,x_{0}\webright ) \to \webleft (X\vee Y,p_{0}\webright ),\\ \mathrm{inj}_{2} & \colon \webleft (Y,y_{0}\webright ) \to \webleft (X\vee Y,p_{0}\webright ), \end{align*}
given by
\begin{align*} \mathrm{inj}_{1}\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (0,x\webright )\webright ],\\ \mathrm{inj}_{2}\webleft (y\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (1,y\webright )\webright ], \end{align*}
for each $x\in X$ and each $y\in Y$.