The union of $U$ and $V$ is the set $U\cup V$ defined by
Let $X$ be a set and let $U,V\in \mathcal{P}\webleft (X\webright )$.
The union of $U$ and $V$ is the set $U\cup V$ defined by
Let $X$ be a set.
Functoriality. The assignments $U,V,\webleft (U,V\webright )\mapsto U\cup V$ define functors
In particular, the following statements hold for each $U,V,A,B\in \mathcal{P}\webleft (X\webright )$:
Associativity. The diagram
for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.
Unitality. The diagrams
for each $U\in \mathcal{P}\webleft (X\webright )$.
Commutativity. The diagram
for each $U,V\in \mathcal{P}\webleft (X\webright )$.
Annihilation With $X$. The diagrams
for each $U,V\in \mathcal{P}\webleft (X\webright )$.
Distributivity of Unions Over Intersections. The diagrams
for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.
Distributivity of Intersections Over Unions. The diagrams
for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.
Idempotency. The diagram
for each $U\in \mathcal{P}\webleft (X\webright )$.
Via Intersections and Symmetric Differences. The diagram
for each $U,V\in \mathcal{P}\webleft (X\webright )$.
Interaction With Characteristic Functions I. We have
for each $U,V\in \mathcal{P}\webleft (X\webright )$.
Interaction With Characteristic Functions II. We have
for each $U,V\in \mathcal{P}\webleft (X\webright )$.
Interaction With Direct Images. Let $f\colon X\to Y$ be a function. The diagram
for each $U,V\in \mathcal{P}\webleft (X\webright )$.
Interaction With Inverse Images. Let $f\colon X\to Y$ be a function. The diagram
for each $U,V\in \mathcal{P}\webleft (Y\webright )$.
Interaction With Codirect Images. Let $f\colon X\to Y$ be a function. We have a natural transformation
indexed by $U,V\in \mathcal{P}\webleft (X\webright )$.
Interaction With Powersets and Semirings. The quintuple $\webleft (\mathcal{P}\webleft (X\webright ),\cup ,\cap ,\text{Ø},X\webright )$ is an idempotent commutative semiring.
and
This finishes the proof.