4.3.8 Binary Unions

    Let $X$ be a set and let $U,V\in \mathcal{P}\webleft (X\webright )$.

    The union of $U$ and $V$ is the set $U\cup V$ defined by

    \begin{align*} U\cup V & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{z\in \left\{ U,V\right\} }z\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \text{$x\in U$ or $x\in V$}\right\} . \end{align*}

    Let $X$ be a set.

    1. 1.

      Functoriality. The assignments $U,V,\webleft (U,V\webright )\mapsto U\cup V$ define functors

      \[ \begin{array}{ccc} U\cup -\colon \mkern -15mu & \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ) \mkern -17.5mu& {}\mathbin {\to }\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\\ -\cup V\colon \mkern -15mu & \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ) \mkern -17.5mu& {}\mathbin {\to }\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\\ -_{1}\cup -_{2}\colon \mkern -15mu & \webleft (\mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (X\webright ),\subset \times \subset \webright ) \mkern -17.5mu& {}\mathbin {\to }\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ). \end{array} \]

      In particular, the following statements hold for each $U,V,A,B\in \mathcal{P}\webleft (X\webright )$:

      1. (a)

        If $U\subset A$, then $U\cup V\subset A\cup V$.

      2. (b)

        If $V\subset B$, then $U\cup V\subset U\cup B$.

      3. (c)

        If $U\subset A$ and $V\subset B$, then $U\cup V\subset A\cup B$.

    2. 2.

      Associativity. The diagram

      commutes, i.e. we have an equality of sets

      \[ \webleft (U\cup V\webright )\cup W = U\cup \webleft (V\cup W\webright ) \]

      for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

    3. 3.

      Unitality. The diagrams

      commute, i.e. we have equalities of sets

      \begin{align*} \text{Ø}\cup U & = U,\\ U\cup \text{Ø}& = U \end{align*}

      for each $U\in \mathcal{P}\webleft (X\webright )$.

    4. 4.

      Commutativity. The diagram

      commutes, i.e. we have an equality of sets

      \[ U\cup V = V\cup U \]

      for each $U,V\in \mathcal{P}\webleft (X\webright )$.

    5. 5.

      Annihilation With $X$. The diagrams

      commute, i.e. we have equalities of sets

      \begin{align*} U\cup X & = X,\\ X\cup V & = X \end{align*}

      for each $U,V\in \mathcal{P}\webleft (X\webright )$.

    6. 6.

      Distributivity of Unions Over Intersections. The diagrams

      commute, i.e. we have equalities of sets

      \begin{align*} U\cup \webleft (V\cap W\webright ) & = \webleft (U\cup V\webright )\cap \webleft (U\cup W\webright ),\\ \webleft (U\cap V\webright )\cup W & = \webleft (U\cup W\webright )\cap \webleft (V\cup W\webright ) \end{align*}

      for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

    7. 7.

      Distributivity of Intersections Over Unions. The diagrams

      commute, i.e. we have equalities of sets

      \begin{align*} U\cap \webleft (V\cup W\webright ) & = \webleft (U\cap V\webright )\cup \webleft (U\cap W\webright ),\\ \webleft (U\cup V\webright )\cap W & = \webleft (U\cap W\webright )\cup \webleft (V\cap W\webright ) \end{align*}

      for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

    8. 8.

      Idempotency. The diagram

      commutes, i.e. we have an equality of sets

      \[ U\cup U=U \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.

    9. 9.

      Via Intersections and Symmetric Differences. The diagram

      commutes, i.e. we have an equality of sets

      \[ U\cup V=\webleft (U\mathbin {\triangle }V\webright )\mathbin {\triangle }\webleft (U\cap V\webright ) \]

      for each $U,V\in \mathcal{P}\webleft (X\webright )$.

    10. 10.

      Interaction With Characteristic Functions I. We have

      \[ \chi _{U\cup V}=\operatorname*{\operatorname {\mathrm{max}}}\webleft (\chi _{U},\chi _{V}\webright ) \]

      for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  • 11.

    Interaction With Characteristic Functions II. We have

    \[ \chi _{U\cup V}=\chi _{U}+\chi _{V}-\chi _{U\cap V} \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  • 12.

    Interaction With Direct Images. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have

    \[ f_{!}\webleft (U\cup V\webright )=f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  • 13.

    Interaction With Inverse Images. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have

    \[ f^{-1}\webleft (U\cup V\webright )=f^{-1}\webleft (U\webright )\cup f^{-1}\webleft (V\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (Y\webright )$.

  • 14.

    Interaction With Codirect Images. Let $f\colon X\to Y$ be a function. We have a natural transformation

    with components

    \[ f_{*}\webleft (U\webright )\cup f_{*}\webleft (V\webright )\subset f_{*}\webleft (U\cup V\webright ) \]

    indexed by $U,V\in \mathcal{P}\webleft (X\webright )$.

  • 15.

    Interaction With Powersets and Semirings. The quintuple $\webleft (\mathcal{P}\webleft (X\webright ),\cup ,\cap ,\text{Ø},X\webright )$ is an idempotent commutative semiring.

  • Item 1: Functoriality
    See [Proof Wiki Contributors, Set Union Preserves Subsets — Proof Wiki].

    Item 2: Associativity
    See [Proof Wiki Contributors, Union Is Associative — Proof Wiki].

    Item 3: Unitality
    This follows from [Proof Wiki Contributors, Union With Empty Set — Proof Wiki] and Item 4.

    Item 4: Commutativity
    See [Proof Wiki Contributors, Union Is Commutative — Proof Wiki].

    Item 5: Annihilation With $X$
    We have

    \begin{align*} U\cup X & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \text{$x\in U$ or $x\in X$}\right\} \\ & = \left\{ x\in X\ \middle |\ x\in X\right\} ,\\ & = X \end{align*}

    and

    \begin{align*} X\cup V & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \text{$x\in X$ or $x\in V$}\right\} \\ & = \left\{ x\in X\ \middle |\ x\in X\right\} \\ & = X. \end{align*}

    This finishes the proof.

    Item 6: Distributivity of Unions Over Intersections
    See [Proof Wiki Contributors, Union Distributes Over Intersection — Proof Wiki].

    Item 7: Distributivity of Intersections Over Unions
    See [Proof Wiki Contributors, Set Intersection Distributes Over Union — Proof Wiki].

    Item 8: Idempotency
    See [Proof Wiki Contributors, Set Union Is Idempotent — Proof Wiki].

    Item 9: Via Intersections and Symmetric Differences
    See [Proof Wiki Contributors, Union as Symmetric Difference With Intersection — Proof Wiki].

    Item 10: Interaction With Characteristic Functions I
    See [Proof Wiki Contributors, Characteristic Function of Union — Proof Wiki].

    Item 11: Interaction With Characteristic Functions II
    See [Proof Wiki Contributors, Characteristic Function of Union — Proof Wiki].

    Item 12: Interaction With Direct Images
    See [Proof Wiki Contributors, Image of Union Under Mapping — Proof Wiki].

    Item 13: Interaction With Inverse Images
    See [Proof Wiki Contributors, Preimage of Union Under Mapping — Proof Wiki].

    Item 14: Interaction With Codirect Images
    This is a repetition of Item 5 of Proposition 4.6.3.1.7 and is proved there.

    Item 15: Interaction With Powersets and Semirings
    This follows from Item 2, Item 3, Item 4, and Item 8 of this propostition and Item 3, Item 4, Item 5, Item 8, and Item 6 of Proposition 4.3.9.1.2.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: