The product of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ is the product of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ in $\mathsf{Sets}_{*}$ as in ,
.
6.2.3 Products
Let $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ be pointed sets.
Concretely, the product of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ is the pair consisting of:
-
•
The Limit. The pointed set $\webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )$.
-
•
The Cone. The morphisms of pointed sets
\begin{align*} \operatorname {\mathrm{\mathrm{pr}}}_{1} & \colon \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )\to \webleft (X,x_{0}\webright ),\\ \operatorname {\mathrm{\mathrm{pr}}}_{2} & \colon \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )\to \webleft (Y,y_{0}\webright ) \end{align*}defined by
\begin{align*} \operatorname {\mathrm{\mathrm{pr}}}_{1}\webleft (x,y\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x,\\ \operatorname {\mathrm{\mathrm{pr}}}_{2}\webleft (x,y\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}y \end{align*}for each $\webleft (x,y\webright )\in X\times Y$.
We claim that $\webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )$ is the categorical product of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ in $\mathsf{Sets}_{*}$. Indeed, suppose we have a diagram of the form
making the diagram
via
for each $x\in P$. Note that this is indeed a morphism of pointed sets, as we have
where we have used that $p_{1}$ and $p_{2}$ are morphisms of pointed sets.
Let $\webleft (X,x_{0}\webright )$, $\webleft (Y,y_{0}\webright )$, and $\webleft (Z,z_{0}\webright )$ be pointed sets.
-
1.
Functoriality. The assignments
\[ \webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright )\webright )\mapsto \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright ) \]define functors
\[ \begin{array}{ccc} A\times -\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -\times B\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -_{1}\times -_{2}\colon \mkern -15mu & \mathsf{Sets}_{*}\times \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*}, \end{array} \]defined in the same way as the functors of Chapter 4: Constructions With Sets, Item 1 of Proposition 4.1.3.1.3.
-
2.
Lack of Adjointness. The functors $X\times -$ and $-\times Y$ do not admit right adjoints.
-
3.
Associativity. We have an isomorphism of pointed sets
\[ \webleft (\webleft (X\times Y\webright )\times Z,\webleft (\webleft (x_{0},y_{0}\webright ),z_{0}\webright )\webright ) \cong \webleft (X\times \webleft (Y\times Z\webright ),\webleft (x_{0},\webleft (y_{0},z_{0}\webright )\webright )\webright ) \]natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$.
-
4.
Unitality. We have isomorphisms of pointed sets
\begin{align*} \webleft (\mathrm{pt},\star \webright )\times \webleft (X,x_{0}\webright ) & \cong \webleft (X,x_{0}\webright ),\\ \webleft (X,x_{0}\webright )\times \webleft (\mathrm{pt},\star \webright ) & \cong \webleft (X,x_{0}\webright ), \end{align*}natural in $\webleft (X,x_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$.
-
5.
Commutativity. We have an isomorphism of pointed sets
\[ \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright ) \cong \webleft (Y\times X,\webleft (y_{0},x_{0}\webright )\webright ), \]natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$.
-
6.
Symmetric Monoidality. The triple $\webleft (\mathsf{Sets}_{*},\times ,\webleft (\mathrm{pt},\star \webright )\webright )$ is a symmetric monoidal category.