The pullback of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ over $\webleft (Z,z_{0}\webright )$ along $\webleft (f,g\webright )$ is the pullback of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ over $\webleft (Z,z_{0}\webright )$ along $\webleft (f,g\webright )$ in $\mathsf{Sets}_{*}$ as in ,
.
6.2.4 Pullbacks
Let $\webleft (X,x_{0}\webright )$, $\webleft (Y,y_{0}\webright )$, and $\webleft (Z,z_{0}\webright )$ be pointed sets and let $f\colon \webleft (X,x_{0}\webright )\to \webleft (Z,z_{0}\webright )$ and $g\colon \webleft (Y,y_{0}\webright )\to \webleft (Z,z_{0}\webright )$ be morphisms of pointed sets.
Concretely, the pullback of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ over $\webleft (Z,z_{0}\webright )$ along $\webleft (f,g\webright )$ is the pair consisting of:
-
•
The Limit. The pointed set $\webleft (X\times _{Z}Y,\webleft (x_{0},y_{0}\webright )\webright )$.
-
•
The Cone. The morphisms of pointed sets
\begin{align*} \operatorname {\mathrm{\mathrm{pr}}}_{1} & \colon \webleft (X\times _{Z}Y,\webleft (x_{0},y_{0}\webright )\webright )\to \webleft (X,x_{0}\webright ),\\ \operatorname {\mathrm{\mathrm{pr}}}_{2} & \colon \webleft (X\times _{Z}Y,\webleft (x_{0},y_{0}\webright )\webright )\to \webleft (Y,y_{0}\webright ) \end{align*}defined by
\begin{align*} \operatorname {\mathrm{\mathrm{pr}}}_{1}\webleft (x,y\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x,\\ \operatorname {\mathrm{\mathrm{pr}}}_{2}\webleft (x,y\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}y \end{align*}for each $\webleft (x,y\webright )\in X\times _{Z}Y$.
We claim that $X\times _{Z}Y$ is the categorical pullback of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ over $\webleft (Z,z_{0}\webright )$ with respect to $\webleft (f,g\webright )$ in $\mathsf{Sets}_{*}$. First we need to check that the relevant pullback diagram commutes, i.e. that we have
where $f\webleft (x\webright )=g\webleft (y\webright )$ since $\webleft (x,y\webright )\in X\times _{Z}Y$. Next, we prove that $X\times _{Z}Y$ satisfies the universal property of the pullback. Suppose we have a diagram of the form
making the diagram
via
for each $x\in P$, where we note that $\webleft (p_{1}\webleft (x\webright ),p_{2}\webleft (x\webright )\webright )\in X\times Y$ indeed lies in $X\times _{Z}Y$ by the condition
which gives
for each $x\in P$, so that $\webleft (p_{1}\webleft (x\webright ),p_{2}\webleft (x\webright )\webright )\in X\times _{Z}Y$. Lastly, we note that $\phi $ is indeed a morphism of pointed sets, as we have
where we have used that $p_{1}$ and $p_{2}$ are morphisms of pointed sets.
Let $\webleft (X,x_{0}\webright )$, $\webleft (Y,y_{0}\webright )$, $\webleft (Z,z_{0}\webright )$, and $\webleft (A,a_{0}\webright )$ be pointed sets.
-
1.
Functoriality. The assignment $\webleft (X,Y,Z,f,g\webright )\mapsto X\times _{f,Z,g}Y$ defines a functor
\[ -_{1}\times _{-_{3}}-_{1}\colon \mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}_{*}\webright )\to \mathsf{Sets}_{*}, \]where $\mathcal{P}$ is the category that looks like this:
In particular, the action on morphisms of $-_{1}\times _{-_{3}}-_{1}$ is given by sending a morphismin $\mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}_{*}\webright )$ to the morphism of pointed sets\[ \xi \colon \webleft (X\times _{Z}Y,\webleft (x_{0},y_{0}\webright )\webright )\overset {\exists !}{\to }\webleft (X'\times _{Z'}Y',\webleft (x'_{0},y'_{0}\webright )\webright ) \]given by
\[ \xi \webleft (x,y\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\phi \webleft (x\webright ),\psi \webleft (y\webright )\webright ) \]for each $\webleft (x,y\webright )\in X\times _{Z}Y$, which is the unique morphism of pointed sets making the diagram
commute. -
2.
Associativity. Given a diagram
in $\mathsf{Sets}_{*}$, we have isomorphisms of pointed sets\[ \webleft (X\times _{W}Y\webright )\times _{V}Z\cong \webleft (X\times _{W}Y\webright )\times _{Y}\webleft (Y\times _{V}Z\webright ) \cong X\times _{W}\webleft (Y\times _{V}Z\webright ), \]where these pullbacks are built as in the diagrams
-
3.
Unitality. We have isomorphisms of pointed sets
-
4.
Commutativity. We have an isomorphism of pointed sets
-
5.
Interaction With Products. We have an isomorphism of pointed sets
-
6.
Symmetric Monoidality. The triple $\webleft (\mathsf{Sets}_{*},\times _{X},X\webright )$ is a symmetric monoidal category.