6.4.1 Free Pointed Sets

    Let $X$ be a set.

    The free pointed set on $X$ is the pointed set $\smash {X^{+}}$ consisting of:

    • The Underlying Set. The set $X^{+}$ defined by1

      \begin{align*} X^{+} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\mathrm{pt}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\left\{ \star \right\} . \end{align*}
    • The Basepoint. The element $\star $ of $X^{+}$.


    1. 1Further Notation: We sometimes write $\star _{X}$ for the basepoint of $X^{+}$ for clarity, specially when there are multiple free pointed sets involved in the current discussion.

    Let $X$ be a set.

    1. 1.

      Functoriality. The assignment $X\mapsto X^{+}$ defines a functor

      \[ (-)^{+} \colon \mathsf{Sets}\to \mathsf{Sets}_{*}, \]

      where:

      • Action on Objects. For each $X\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, we have

        \[ [(-)^{+}](X)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X^{+}, \]

        where $X^{+}$ is the pointed set of Definition 6.4.1.1.1.

      • Action on Morphisms. For each morphism $f\colon X\to Y$ of $\mathsf{Sets}$, the image

        \[ f^{+}\colon X^{+}\to Y^{+} \]

        of $f$ by $(-)^{+}$ is the map of pointed sets defined by

        \[ f^{+}(x) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} f(x) & \text{if $x\in X$,}\\ \star _{Y} & \text{if $x=\star _{X}$.} \end{cases} \]
  • 2.

    Adjointness. We have an adjunction

    witnessed by a bijection of sets

    \begin{align*} \mathsf{Sets}_{*}((X^{+},\star _{X}),(Y,y_{0}))\cong \mathsf{Sets}(X,Y),\end{align*}

    natural in $X\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$ and $(Y,y_{0})\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$.

  • 3.

    Symmetric Strong Monoidality With Respect to Wedge Sums. The free pointed set functor of Item 1 has a symmetric strong monoidal structure

    \[ ((-)^{+},(-)^{+,\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}},(-)^{+,\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{\mathbb {1}}) \colon (\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\text{Ø}) \to (\mathsf{Sets}_{*},\vee ,\mathrm{pt}), \]

    being equipped with isomorphisms of pointed sets

    \[ \begin{gathered} (-)^{+,\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{X,Y} \colon X^{+}\vee Y^{+} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }(X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y)^{+},\\ (-)^{+,\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{\mathbb {1}} \colon \mathrm{pt}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\text{Ø}^{+}, \end{gathered} \]

    natural in $X,Y\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.

  • 4.

    Symmetric Strong Monoidality With Respect to Smash Products. The free pointed set functor of Item 1 has a symmetric strong monoidal structure

    \[ ((-)^{+},(-)^{+},(-)^{+}_{\mathbb {1}}) \colon (\mathsf{Sets},\times ,\mathrm{pt}) \to (\mathsf{Sets}_{*},\wedge ,S^{0}), \]

    being equipped with isomorphisms of pointed sets

    \[ \begin{gathered} (-)^{+}_{X,Y} \colon X^{+}\wedge Y^{+} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }(X\times Y)^{+},\\ (-)^{+}_{\mathbb {1}} \colon S^{0} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\mathrm{pt}^{+}, \end{gathered} \]

    natural in $X,Y\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.

  • Item 1: Functoriality
    We claim that $(-)^{+}$ is indeed a functor:

    • Preservation of Identities. Let $X\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$. We have

      \[ \operatorname {\mathrm{id}}^{+}_{X}(x)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} x & \text{if $x\in X$,}\\ \star _{X} & \text{if $x=\star _{X}$,} \end{cases} \]

      for each $x\in X^{+}$, so $\operatorname {\mathrm{id}}^{+}_{X}=\operatorname {\mathrm{id}}_{X^{+}}$.

    • Preservation of Composition. Given morphisms of sets

      \begin{align*} f & \colon X \to Y,\\ g & \colon Y \to Z, \end{align*}

      we have

      \begin{align*} [g^{+}\circ f^{+}](x) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g^{+}(f^{+}(x))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g^{+}(f(x))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g(f(x))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[g\circ f]^{+}(x)\end{align*}

      for each $x\in X$ and

      \begin{align*} [g^{+}\circ f^{+}](\star _{X}) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g^{+}(f^{+}(\star _{X}))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g^{+}(\star _{Y})\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\star _{Z}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[g\circ f]^{+}(\star _{X}), \end{align*}

      so $(g\circ f)^{+}=g^{+}\circ f^{+}$.

    This finishes the proof.

    Item 2: Adjointness
    We proceed in a few steps:

    • Map I. We define a map

      \[ \Phi _{X,Y}\colon \mathsf{Sets}_{*}(X^{+},Y)\to \mathsf{Sets}(X,Y) \]

      by sending a morphism of pointed sets

      \[ \xi \colon (X^{+},\star _{X})\to (Y,y_{0}) \]

      to the function

      \[ \xi ^{\dagger }\colon X\to Y \]

      given by

      \[ \xi ^{\dagger }(x)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi (x) \]

      for each $x\in X$.

    • Map II. We define a map

      \[ \Psi _{X,Y}\colon \mathsf{Sets}(X,Y)\to \mathsf{Sets}_{*}(X^{+},Y) \]

      given by sending a function $\xi \colon X\to Y$ to the morphism of pointed sets

      \[ \xi ^{\dagger }\colon (X^{+},\star _{X})\to (Y,y_{0}) \]

      defined by

      \[ \xi ^{\dagger }(x)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \xi (x) & \text{if $x\in X$,}\\ y_{0} & \text{if $x=\star _{X}$} \end{cases} \]

      for each $x\in X^{+}$.

    • Invertibility I. Given a morphism of pointed sets

      \[ \xi \colon (X^{+},\star _{X})\to (Y,y_{0}), \]

      we have

      \begin{align*} [\Psi _{X,Y}\circ \Phi _{X,Y}](\xi ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Psi _{X,Y}(\Phi _{X,Y}(\xi ))\\ & = \Psi _{X,Y}(\xi ^{\dagger })\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left[\mspace {-6mu}\left[x\mapsto {\begin{cases} \xi ^{\dagger }(x)& \text{if $x\in X$}\\ y_{0}& \text{if $x=\star _{X}$}\end{cases}}\right]\mspace {-6mu}\right]\\ & = \left[\mspace {-6mu}\left[x\mapsto {\begin{cases} \xi (x)& \text{if $x\in X$}\\ y_{0}& \text{if $x=\star _{X}$}\end{cases}}\right]\mspace {-6mu}\right]\\ & = \xi \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\operatorname {\mathrm{id}}_{\mathsf{Sets}_{*}(X^{+},Y)}](\xi ).\end{align*}

      Therefore we have

      \[ \Psi _{X,Y}\circ \Phi _{X,Y}=\operatorname {\mathrm{id}}_{\mathsf{Sets}_{*}(X^{+},Y)}. \]
    • Invertibility II. Given a map of sets $\xi \colon X\to Y$, we have

      \begin{align*} [\Phi _{X,Y}\circ \Psi _{X,Y}](\xi ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi _{X,Y}(\Psi _{X,Y}(\xi ))\\ & = \Phi _{X,Y}(\xi ^{\dagger })\\ & = \Phi _{X,Y}(\left[\mspace {-6mu}\left[x\mapsto {\begin{cases} \xi (x)& \text{if $x\in X$}\\ y_{0}& \text{if $x=\star _{X}$}\end{cases}}\right]\mspace {-6mu}\right])\\ & = [\mspace {-3mu}[x\mapsto \xi (x)]\mspace {-3mu}]\\ & = \xi \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\operatorname {\mathrm{id}}_{\mathsf{Sets}(X,Y)}](\xi ).\end{align*}

      Therefore we have

      \[ \Phi _{X,Y}\circ \Psi _{X,Y}=\operatorname {\mathrm{id}}_{\mathsf{Sets}(X,Y)}. \]
    • Naturality for $\Phi $, Part I. We need to show that, given a morphism of pointed sets

      \[ f\colon (X,x_{0})\to (X',x'_{0}), \]

      the diagram

      commutes. Indeed, given a morphism of pointed sets $\xi \colon X^{\prime ,+}\to Y$, we have

      \begin{align*} [\Phi _{X,Y}\circ f^{*}](\xi ) & = \Phi _{X,Y}(f^{*}(\xi ))\\ & = \Phi _{X,Y}(\xi \circ f)\\ & = \xi \circ f\\ & = \Phi _{X',Y}(\xi )\circ f\\ & = f^{*}(\Phi _{X',Y}(\xi ))\\ & = f^{*}(\Phi _{X',Y}(\xi ))\\ & = [f^{*}\circ \Phi _{X',Y}](\xi ). \end{align*}

      Therefore we have

      \[ \Phi _{X,Y}\circ f^{*}=f^{*}\circ \Phi _{X',Y} \]

      and the naturality diagram for $\Phi $ above indeed commutes.

    • Naturality for $\Phi $, Part II. We need to show that, given a morphism of pointed sets

      \[ g\colon (Y,y_{0})\to (Y',y'_{0}), \]

      the diagram

      commutes. Indeed, given a morphism of pointed sets

      \[ \xi ^{\dagger }\colon X^{+} \to Y, \]

      we have

      \begin{align*} [\Phi _{X,Y'}\circ g_{*}](\xi ) & = \Phi _{X,Y'}(g_{*}(\xi ))\\ & = \Phi _{X,Y'}(g\circ \xi )\\ & = g\circ \xi \\ & = g\circ \Phi _{X,Y'}(\xi )\\ & = g_{*}(\Phi _{X,Y'}(\xi ))\\ & = [g_{*}\circ \Phi _{X,Y'}](\xi ). \end{align*}

      Therefore we have

      \[ \Phi _{X,Y'}\circ g_{*}=g_{*}\circ \Phi _{X,Y'} \]

      and the naturality diagram for $\Phi $ above indeed commutes.

    • Naturality for $\Psi $. Since $\Phi $ is natural in each argument and $\Phi $ is a componentwise inverse to $\Psi $ in each argument, it follows from Chapter 11: Categories, Item 2 of Proposition 11.9.7.1.2 that $\Psi $ is also natural in each argument.

    This finishes the proof.

    Item 3: Symmetric Strong Monoidality With Respect to Wedge Sums
    We construct the strong monoidal structure on $(-)^{+}$ with respect to $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$ and $\vee $ as follows:

    • The Strong Monoidality Constraints. The isomorphism

      \[ (-)^{+,\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{X,Y}\colon X^{+}\vee Y^{+}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }(X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y)^{+} \]

      is given by

      \[ (-)^{+,\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{X,Y}(z)=\begin{cases} x & \text{if $z=[(0,x)]$ with $x\in X$,}\\ y & \text{if $z=[(1,y)]$ with $y\in Y$,}\\ \star _{X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y} & \text{if $z=[(0,\star _{X})]$,}\\ \star _{X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y} & \text{if $z=[(1,\star _{Y})]$}\end{cases} \]

      for each $z\in X^{+}\vee Y^{+}$, with inverse

      \[ (-)^{+,\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},-1}_{X,Y} \colon (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y)^{+} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }X^{+}\vee Y^{+} \]

      given by

      \[ (-)^{+,\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},-1}_{X,Y}(z)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} [(0,x)] & \text{if $z=[(0,x)]$,}\\ [(1,y)] & \text{if $z=[(1,y)]$,}\\ p_{0} & \text{if $z=\star _{X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y}$} \end{cases} \]

      for each $z\in (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y)^{+}$.

    • The Strong Monoidal Unity Constraint. The isomorphism

      \[ (-)^{+,\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\mathbb {1}}_{X,Y}\colon \mathrm{pt}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\text{Ø}^{+} \]

      is given by sending $\star _{X}$ to $\star _{\text{Ø}}$.

    The verification that these isomorphisms satisfy the coherence conditions making the functor $(-)^{+}$ into a symmetric strong monoidal functor is omitted.

    Item 4: Symmetric Strong Monoidality With Respect to Smash Products
    We construct the strong monoidal structure on $(-)^{+}$ with respect to $\times $ and $\wedge $ as follows:

    • The Strong Monoidality Constraints. The isomorphism

      \[ (-)^{+}_{X,Y}\colon X^{+}\wedge Y^{+}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }(X\times Y)^{+} \]

      is given by

      \[ (-)^{+}_{X,Y}(x\wedge y)=\begin{cases} (x,y) & \text{if $x\neq \star _{X}$ and $y\neq \star _{Y}$}\\ \star _{X\times Y} & \text{otherwise}\end{cases} \]

      for each $x\wedge y\in X^{+}\wedge Y^{+}$, with inverse

      \[ (-)^{+,-1}_{X,Y} \colon (X\times Y)^{+} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }X^{+}\wedge Y^{+} \]

      given by

      \[ (-)^{+,-1}_{X,Y}(z)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} x\wedge y & \text{if $z=(x,y)$ with $(x,y)\in X\times Y$,}\\ \star _{X}\wedge \star _{Y} & \text{if $z=\star _{X\times Y}$,} \end{cases} \]

      for each $z\in (X\times Y)^{+}$.

    • The Strong Monoidal Unity Constraint. The isomorphism

      \[ (-)^{+,\mathbb {1}}_{X,Y}\colon S^{0}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\mathrm{pt}^{+} \]

      is given by sending $0$ to $\star _{\mathrm{pt}}$ and $1$ to $\star $, where $\mathrm{pt}^{+}=\left\{ \star ,\star _{\mathrm{pt}}\right\} $.

    The verification that these isomorphisms satisfy the coherence conditions making the functor $(-)^{+}$ into a symmetric strong monoidal functor is omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: