11 Categories
This chapter contains some elementary material about categories, functors, and natural transformations. Notably, we discuss and explore:
-
1.
Categories (Section 11.1).
-
2.
Examples of categories (Section 11.2).
-
3.
The quadruple adjunction $\pi _{0}\dashv {\webleft (-\webright )_{\mathsf{disc}}}\dashv \operatorname {\mathrm{Obj}}\dashv {\webleft (-\webright )_{\mathsf{indisc}}}$ between the category of categories and the category of sets (Section 11.3).
-
4.
Groupoids, categories in which all morphisms admit inverses (Section 11.4).
-
5.
Functors (Section 11.5).
-
6.
The conditions one may impose on functors in decreasing order of importance:
-
(a)
Section 11.6 introduces the foundationally important conditions one may impose on functors, such as faithfulness, conservativity, essential surjectivity, etc.
-
(b)
Section 11.7 introduces more conditions one may impose on functors that are still important but less omni-present than those of Section 11.6, such as being dominant, being a monomorphism, being pseudomonic, etc.
-
(c)
Section 11.8 introduces some rather rare or uncommon conditions one may impose on functors that are nevertheless still useful to explicit record in this chapter.
-
(a)
-
7.
Natural transformations (Section 11.9).
-
8.
The various categorical and 2-categorical structures formed by categories, functors, and natural transformations (Section 11.10).
-
Section 11.1: Categories
-
Subsection 11.1.1: Foundations
- Definition 11.1.1.1.1: Categories
- Notation 11.1.1.1.2: Further Notation for Morphisms in Categories
- Definition 11.1.1.1.3: Size Conditions on Categories
-
Subsection 11.1.2: Subcategories
- Definition 11.1.2.1.1: Subcategories
- Definition 11.1.2.1.2: Full Subcategories
- Definition 11.1.2.1.3: Strictly Full Subcategories
- Definition 11.1.2.1.4: Wide Subcategories
-
Subsection 11.1.3: Skeletons of Categories
- Definition 11.1.3.1.1: Skeletons of Categories
- Definition 11.1.3.1.2: Skeletal Categories
- Proposition 11.1.3.1.3: Properties of Skeletons of Categories
-
Subsection 11.1.4: Precomposition and Postcomposition
- Definition 11.1.4.1.1: Precomposition and Postcomposition Functions
- Proposition 11.1.4.1.2: Properties of Pre/Postcomposition
-
Subsection 11.1.1: Foundations
-
Section 11.2: Examples of Categories
-
Subsection 11.2.1: The Empty Category
- Example 11.2.1.1.1: The Empty Category
-
Subsection 11.2.2: The Punctual Category
- Example 11.2.2.1.1: The Punctual Category
-
Subsection 11.2.3: Monoids as One-Object Categories
- Example 11.2.3.1.1: Monoids as One-Object Categories
-
Subsection 11.2.4: Ordinal Categories
- Example 11.2.4.1.1: Ordinal Categories
-
Subsection 11.2.5: The Walking Arrow
- Definition 11.2.5.1.1: The Walking Arrow
- Remark 11.2.5.1.2: Unwinding Definition 11.2.5.1.1
-
Subsection 11.2.6: More Examples of Categories
- Example 11.2.6.1.1: More Examples of Categories
-
Subsection 11.2.7: Posetal Categories
- Definition 11.2.7.1.1: Posetal Categories
- Proposition 11.2.7.1.2: Properties of Posetal Categories
-
Subsection 11.2.1: The Empty Category
-
Section 11.3: The Quadruple Adjunction With Sets
-
Subsection 11.3.1: Statement
- Proposition 11.3.1.1.1: The Quadruple Adjunction Between $\mathsf{Sets}$ and $\mathsf{Cats}$
-
Subsection 11.3.2: Connected Components and Connected Categories
-
Subsubsection 11.3.2.1: Connected Components of Categories
- Definition 11.3.2.1.1: Connected Components of Categories
-
Subsubsection 11.3.2.2: Sets of Connected Components of Categories
- Definition 11.3.2.2.1: Sets of Connected Components of Categories
- Proposition 11.3.2.2.2: Properties of Sets of Connected Components
-
Subsubsection 11.3.2.3: Connected Categories
- Definition 11.3.2.3.1: Connected Categories
-
Subsubsection 11.3.2.1: Connected Components of Categories
-
Subsection 11.3.3: Discrete Categories
- Definition 11.3.3.1.1: Discrete Categories
- Proposition 11.3.3.1.2: Properties of Discrete Categories on Sets
-
Subsection 11.3.4: Indiscrete Categories
- Definition 11.3.4.1.1: Indiscrete Categories
- Proposition 11.3.4.1.2: Properties of Indiscrete Categories on Sets
-
Subsection 11.3.1: Statement
-
Section 11.4: Groupoids
-
Subsection 11.4.1: Isomorphisms
- Definition 11.4.1.1.1: Isomorphisms
- Notation 11.4.1.1.2: The Set of Isomorphisms Between Two Objects in a Category
-
Subsection 11.4.2: Groupoids
- Definition 11.4.2.1.1: Groupoids
- Example 11.4.2.1.2: Groups as One-Object Groupoids
-
Subsection 11.4.3: The Groupoid Completion of a Category
- Definition 11.4.3.1.1: The Groupoid Completion of a Category
- Construction 11.4.3.1.2: Construction of the Groupoid Completion of a Category
- Proposition 11.4.3.1.3: Properties of Groupoid Completion
-
Subsection 11.4.4: The Core of a Category
- Definition 11.4.4.1.1: The Core of a Category
- Notation 11.4.4.1.2: Alternative Notation for the Core of a Category
- Construction 11.4.4.1.3: Construction of the Core of a Category
- Proposition 11.4.4.1.4: Properties of the Core of a Category
-
Subsection 11.4.1: Isomorphisms
-
Section 11.5: Functors
-
Subsection 11.5.1: Foundations
- Definition 11.5.1.1.1: Functors
- Notation 11.5.1.1.2: Subscript and Superscript Notation for Functors
- Notation 11.5.1.1.3: Additional Notation for Functors
- Example 11.5.1.1.4: Identity Functors
- Definition 11.5.1.1.5: Composition of Functors
- Proposition 11.5.1.1.6: Elementary Properties of Functors
-
Subsection 11.5.2: Contravariant Functors
- Definition 11.5.2.1.1: Contravariant Functors
- Remark 11.5.2.1.2: Unwinding Definition 11.5.2.1.1
- Remark 11.5.2.1.3: On the Term Contravariant Functor
-
Subsection 11.5.3: Forgetful Functors
- Definition 11.5.3.1.1: Forgetful Functors
- Remark 11.5.3.1.2: Unwinding Definition 11.5.3.1.1
- Example 11.5.3.1.3: Forgetful Functors That Forget Structure
- Example 11.5.3.1.4: Forgetful Functors That Forget Properties
- Notation 11.5.3.1.5: Notation For Forgetful Functors That Forget Structure
- Remark 11.5.3.1.6: Pronunciation of the Words in Notation 11.5.3.1.5
-
Subsection 11.5.4: The Natural Transformation Associated to a Functor
- Definition 11.5.4.1.1: The Natural Transformation Associated to a Functor
- Proposition 11.5.4.1.2: Properties of Natural Transformations Associated to Functors
-
Subsection 11.5.1: Foundations
-
Section 11.6: Conditions on Functors
-
Subsection 11.6.1: Faithful Functors
- Definition 11.6.1.1.1: Faithful Functors
- Proposition 11.6.1.1.2: Properties of Faithful Functors
-
Subsection 11.6.2: Full Functors
- Definition 11.6.2.1.1: Full Functors
- Proposition 11.6.2.1.2: Properties of Full Functors
- Question 11.6.2.1.3: Better Characterisations of Functors With Full Precomposition
-
Subsection 11.6.3: Fully Faithful Functors
- Definition 11.6.3.1.1: Fully Faithful Functors
- Proposition 11.6.3.1.2: Properties of Fully Faithful Functors
-
Subsection 11.6.4: Conservative Functors
- Definition 11.6.4.1.1: Conservative Functors
- Proposition 11.6.4.1.2: Properties of Conservative Functors
- Question 11.6.4.1.3: Characterisations of Functors With Conservative Pre/Postcomposition
-
Subsection 11.6.5: Essentially Injective Functors
- Definition 11.6.5.1.1: Essentially Injective Functors
- Question 11.6.5.1.2: Characterisations of Functors With Essentially Injective Pre/Postcomposition
-
Subsection 11.6.6: Essentially Surjective Functors
- Definition 11.6.6.1.1: Essentially Surjective Functors
- Question 11.6.6.1.2: Characterisations of Functors With Essentially Surjective Pre/Postcomposition
-
Subsection 11.6.7: Equivalences of Categories
- Definition 11.6.7.1.1: Equivalences of Categories
- Proposition 11.6.7.1.2: Properties of Equivalences of Categories
-
Subsection 11.6.8: Isomorphisms of Categories
- Definition 11.6.8.1.1: Isomorphisms of Categories
- Example 11.6.8.1.2: Equivalent But Non-Isomorphic Categories
- Proposition 11.6.8.1.3: Properties of Isomorphisms of Categories
-
Subsection 11.6.1: Faithful Functors
-
Section 11.7: More Conditions on Functors
-
Subsection 11.7.1: Dominant Functors
- Definition 11.7.1.1.1: Dominant Functors
- Proposition 11.7.1.1.2: Properties of Dominant Functors
- Question 11.7.1.1.3: Characterisations of Functors With Dominant Pre/Postcomposition
-
Subsection 11.7.2: Monomorphisms of Categories
- Definition 11.7.2.1.1: Monomorphisms of Categories
- Proposition 11.7.2.1.2: Properties of Monomorphisms of Categories
- Question 11.7.2.1.3: Characterisations of Functors With Monic Pre/Postcomposition
-
Subsection 11.7.3: Epimorphisms of Categories
- Definition 11.7.3.1.1: Epimorphisms of Categories
- Proposition 11.7.3.1.2: Properties of Epimorphisms of Categories
- Question 11.7.3.1.3: Characterisations of Functors With Epic Pre/Postcomposition
-
Subsection 11.7.4: Pseudomonic Functors
- Definition 11.7.4.1.1: Pseudomonic Functors
- Proposition 11.7.4.1.2: Properties of Pseudomonic Functors
-
Subsection 11.7.5: Pseudoepic Functors
- Definition 11.7.5.1.1: Pseudoepic Functors
- Proposition 11.7.5.1.2: Properties of Pseudoepic Functors
- Question 11.7.5.1.3: Characterisations of Pseudoepic Functors
- Question 11.7.5.1.4: Must a Pseudomonic and Pseudoepic Functor Be an Equivalence of Categories
- Question 11.7.5.1.5: Characterisations of Functors With Pseudoepic Pre/Postcomposition
-
Subsection 11.7.1: Dominant Functors
-
Section 11.8: Even More Conditions on Functors
-
Subsection 11.8.1: Injective on Objects Functors
- Definition 11.8.1.1.1: Injective on Objects Functors
- Proposition 11.8.1.1.2: Properties of Injective on Objects Functors
-
Subsection 11.8.2: Surjective on Objects Functors
- Definition 11.8.2.1.1: Surjective on Objects Functors
-
Subsection 11.8.3: Bijective on Objects Functors
- Definition 11.8.3.1.1: Bijective on Objects Functors
-
Subsection 11.8.4: Functors Representably Faithful on Cores
- Definition 11.8.4.1.1: Functors Representably Faithful on Cores
- Remark 11.8.4.1.2: Unwinding Definition 11.8.4.1.1
- Question 11.8.4.1.3: Characterisation of Functors Representably Faithful on Cores
-
Subsection 11.8.5: Functors Representably Full on Cores
- Definition 11.8.5.1.1: Functors Representably Full on Cores
- Remark 11.8.5.1.2: Unwinding Definition 11.8.5.1.1
- Question 11.8.5.1.3: Characterisation of Functors Representably Full on Cores
-
Subsection 11.8.6: Functors Representably Fully Faithful on Cores
- Definition 11.8.6.1.1: Functors Representably Fully Faithful on Cores
- Remark 11.8.6.1.2: Unwinding Definition 11.8.6.1.1
- Question 11.8.6.1.3: Characterisation of Functors Representably Fully Faithful on Cores
-
Subsection 11.8.7: Functors Corepresentably Faithful on Cores
- Definition 11.8.7.1.1: Functors Corepresentably Faithful on Cores
- Remark 11.8.7.1.2: Unwinding Definition 11.8.7.1.1
- Question 11.8.7.1.3: Characterisation of Functors Corepresentably Faithful on Cores
-
Subsection 11.8.8: Functors Corepresentably Full on Cores
- Definition 11.8.8.1.1: Functors Corepresentably Full on Cores
- Remark 11.8.8.1.2: Unwinding Definition 11.8.8.1.1
- Question 11.8.8.1.3: Characterisation of Functors Corepresentably Full on Cores
-
Subsection 11.8.9: Functors Corepresentably Fully Faithful on Cores
- Definition 11.8.9.1.1: Functors Corepresentably Fully Faithful on Cores
- Remark 11.8.9.1.2: Unwinding Definition 11.8.9.1.1
- Question 11.8.9.1.3: Characterisation of Functors Corepresentably Fully Faithful on Cores
-
Subsection 11.8.1: Injective on Objects Functors
-
Section 11.9: Natural Transformations
-
Subsection 11.9.1: Transformations
- Definition 11.9.1.1.1: Transformations
- Notation 11.9.1.1.2: The Set of Transformations Between Two Functors
- Remark 11.9.1.1.3: The Set of Transformations as a Product
-
Subsection 11.9.2: Natural Transformations
- Definition 11.9.2.1.1: Natural Transformations
- Remark 11.9.2.1.2: Further Terminology and Notation for Natural Transformations
- Notation 11.9.2.1.3: The Set of Natural Transformations Between Two Functors
- Definition 11.9.2.1.4: Equality of Natural Transformations
-
Subsection 11.9.3: Examples of Natural Transformations
- Example 11.9.3.1.1: Identity Natural Transformations
- Example 11.9.3.1.2: Natural Transformations Between Morphisms of Monoids
-
Subsection 11.9.4: Vertical Composition of Natural Transformations
- Definition 11.9.4.1.1: Vertical Composition of Natural Transformations
- Proposition 11.9.4.1.2: Properties of Vertical Composition of Natural Transformations
-
Subsection 11.9.5: Horizontal Composition of Natural Transformations
- Definition 11.9.5.1.1: Horizontal Composition of Natural Transformations
- Definition 11.9.5.1.2: Whiskering of Functors With Natural Transformations
- Proposition 11.9.5.1.3: Properties of Horizontal Composition of Natural Transformations
-
Subsection 11.9.6: Properties of Natural Transformations
- Proposition 11.9.6.1.1: Natural Transformations as Categorical Homotopies
-
Subsection 11.9.7: Natural Isomorphisms
- Definition 11.9.7.1.1: Natural Isomorphisms
- Proposition 11.9.7.1.2: Properties of Natural Isomorphisms
-
Subsection 11.9.1: Transformations
-
Section 11.10: Categories of Categories
-
Subsection 11.10.1: Functor Categories
- Definition 11.10.1.1.1: Functor Categories
- Proposition 11.10.1.1.2: Properties of Functor Categories
-
Subsection 11.10.2: The Category of Categories and Functors
- Definition 11.10.2.1.1: The Category of Categories and Functors
- Proposition 11.10.2.1.2: Properties of the Category $\mathsf{Cats}$
-
Subsection 11.10.3: The $2$-Category of Categories, Functors, and Natural Transformations
- Definition 11.10.3.1.1: The $2$-Category of Categories
- Proposition 11.10.3.1.2: Properties of the 2-Category $\mathsf{Cats}_{\mathsf{2}}$
-
Subsection 11.10.4: The Category of Groupoids
- Definition 11.10.4.1.1: The Category of Small Groupoids
-
Subsection 11.10.5: The $2$-Category of Groupoids
- Definition 11.10.5.1.1: The $2$-Category of Small Groupoids
-
Subsection 11.10.1: Functor Categories