The punctual category1 is the category $\mathsf{pt}$ where
-
•
Objects. We have
\[ \operatorname {\mathrm{Obj}}\webleft (\mathsf{pt}\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \star \right\} . \] -
•
Morphisms. The unique $\operatorname {\mathrm{Hom}}$-set of $\mathsf{pt}$ is defined by
\[ \operatorname {\mathrm{Hom}}_{\mathsf{pt}}\webleft (\star ,\star \webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \operatorname {\mathrm{id}}_{\star }\right\} . \] -
•
Identities. The unit map
\[ \mathbb {1}^{\mathsf{pt}}_{\star } \colon \mathrm{pt}\to \operatorname {\mathrm{Hom}}_{\mathsf{pt}}\webleft (\star ,\star \webright ) \]of $\mathsf{pt}$ at $\star $ is defined by
\[ \operatorname {\mathrm{id}}^{\mathsf{pt}}_{\star } \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{id}}_{\star }. \] -
•
Composition. The composition map
\[ \circ ^{\mathsf{pt}}_{\star ,\star ,\star } \colon \operatorname {\mathrm{Hom}}_{\mathsf{pt}}\webleft (\star ,\star \webright ) \times \operatorname {\mathrm{Hom}}_{\mathsf{pt}}\webleft (\star ,\star \webright ) \to \operatorname {\mathrm{Hom}}_{\mathsf{pt}}\webleft (\star ,\star \webright ) \]of $\mathsf{pt}$ at $\webleft (\star ,\star ,\star \webright )$ is given by the bijection $\mathrm{pt}\times \mathrm{pt}\cong \mathrm{pt}$.
- 1Further Terminology: Also called the singleton category.