11.2.2 The Punctual Category

The punctual category1 is the category $\mathsf{pt}$ where

  • Objects. We have

    \[ \operatorname {\mathrm{Obj}}(\mathsf{pt}) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \star \right\} . \]
  • Morphisms. The unique $\operatorname {\mathrm{Hom}}$-set of $\mathsf{pt}$ is defined by

    \[ \operatorname {\mathrm{Hom}}_{\mathsf{pt}}(\star ,\star ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \operatorname {\mathrm{id}}_{\star }\right\} . \]
  • Identities. The unit map

    \[ \mathbb {1}^{\mathsf{pt}}_{\star } \colon \mathrm{pt}\to \operatorname {\mathrm{Hom}}_{\mathsf{pt}}(\star ,\star ) \]

    of $\mathsf{pt}$ at $\star $ is defined by

    \[ \operatorname {\mathrm{id}}^{\mathsf{pt}}_{\star } \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{id}}_{\star }. \]
  • Composition. The composition map

    \[ \circ ^{\mathsf{pt}}_{\star ,\star ,\star } \colon \operatorname {\mathrm{Hom}}_{\mathsf{pt}}(\star ,\star ) \times \operatorname {\mathrm{Hom}}_{\mathsf{pt}}(\star ,\star ) \to \operatorname {\mathrm{Hom}}_{\mathsf{pt}}(\star ,\star ) \]

    of $\mathsf{pt}$ at $(\star ,\star ,\star )$ is given by the bijection $\mathrm{pt}\times \mathrm{pt}\cong \mathrm{pt}$.


  1. 1Further Terminology: Also called the singleton category.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: