The empty category is the category $\text{Ø}_{\mathsf{cat}}$ where
-
•
Objects. We have
\[ \operatorname {\mathrm{Obj}}(\text{Ø}_{\mathsf{cat}}) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Ø}. \] -
•
Morphisms. We have
\[ \operatorname {\mathrm{Mor}}(\text{Ø}_{\mathsf{cat}}) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Ø}. \] -
•
Identities and Composition. Having no objects, $\text{Ø}_{\mathsf{cat}}$ has no unit nor composition maps.