A subcategory of $\mathcal{C}$ is a category $\mathcal{A}$ satisfying the following conditions:
-
1.
Objects. We have $\operatorname {\mathrm{Obj}}(\mathcal{A})\subset \operatorname {\mathrm{Obj}}(\mathcal{C})$.
-
2.
Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}(\mathcal{A})$, we have
\[ \operatorname {\mathrm{Hom}}_{\mathcal{A}}(A,B) \subset \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B). \] -
3.
Identities. For each $A\in \operatorname {\mathrm{Obj}}(\mathcal{A})$, we have
\[ \mathbb {1}^{\mathcal{A}}_{A} = \mathbb {1}^{\mathcal{C}}_{A}. \] -
4.
Composition. For each $A,B,C\in \operatorname {\mathrm{Obj}}(\mathcal{A})$, we have
\[ \circ ^{\mathcal{A}}_{A,B,C} = \circ ^{\mathcal{C}}_{A,B,C}. \]