11.1.2 Subcategories

Let $\mathcal{C}$ be a category.

A subcategory of $\mathcal{C}$ is a category $\mathcal{A}$ satisfying the following conditions:

  1. 1.

    Objects. We have $\operatorname {\mathrm{Obj}}\webleft (\mathcal{A}\webright )\subset \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$.

  2. 2.

    Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{A}\webright )$, we have

    \[ \operatorname {\mathrm{Hom}}_{\mathcal{A}}\webleft (A,B\webright ) \subset \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,B\webright ). \]
  3. 3.

    Identities. For each $A\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{A}\webright )$, we have

    \[ \mathbb {1}^{\mathcal{A}}_{A} = \mathbb {1}^{\mathcal{C}}_{A}. \]
  4. 4.

    Composition. For each $A,B,C\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{A}\webright )$, we have

    \[ \circ ^{\mathcal{A}}_{A,B,C} = \circ ^{\mathcal{C}}_{A,B,C}. \]

A subcategory $\mathcal{A}$ of $\mathcal{C}$ is full if the canonical inclusion functor $\mathcal{A}\to \mathcal{C}$ is full, i.e. if, for each $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{A}\webright )$, the inclusion

\[ \iota _{A,B}\colon \operatorname {\mathrm{Hom}}_{\mathcal{A}}\webleft (A,B\webright )\hookrightarrow \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,B\webright ) \]

is surjective (and thus bijective).

A subcategory $\mathcal{A}$ of a category $\mathcal{C}$ is strictly full if it satisfies the following conditions:

  1. 1.

    Fullness. The subcategory $\mathcal{A}$ is full.

  2. 2.

    Closedness Under Isomorphisms. The class $\operatorname {\mathrm{Obj}}\webleft (\mathcal{A}\webright )$ is closed under isomorphisms.1


  1. 1That is, given $A\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{A}\webright )$ and $C\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, if $C\cong A$, then $C\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{A}\webright )$.

A subcategory $\mathcal{A}$ of $\mathcal{C}$ is wide1 if $\operatorname {\mathrm{Obj}}\webleft (\mathcal{A}\webright )=\operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$.


  1. 1Further Terminology: Also called lluf.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: