11.7.4 Pseudomonic Functors

Let $\mathcal{C}$ and $\mathcal{D}$ be categories.

A functor $F\colon \mathcal{C}\to \mathcal{D}$ is pseudomonic if it satisfies the following conditions:

  1. 1.

    For all diagrams of the form

    if we have

    \[ \operatorname {\mathrm{id}}_{F}\mathbin {\star }\alpha =\operatorname {\mathrm{id}}_{F}\mathbin {\star }\beta , \]

    then $\alpha =\beta $.

  2. 2.

    For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$ and each natural isomorphism

    there exists a natural isomorphism
    such that we have an equality
    of pasting diagrams, i.e. such that we have

    \[ \beta =\operatorname {\mathrm{id}}_{F}\mathbin {\star }\alpha . \]

Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.

  1. 1.

    Characterisations. The following conditions are equivalent:

    1. (a)

      The functor $F$ is pseudomonic.

    2. (b)

      The functor $F$ satisfies the following conditions:

      1. (i)

        The functor $F$ is faithful, i.e. for each $A,B\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, the action on morphisms

        \[ F_{A,B} \colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B) \to \operatorname {\mathrm{Hom}}_{\mathcal{D}}(F_{A},F_{B}) \]

        of $F$ at $(A,B)$ is injective.

      2. (ii)

        For each $A,B\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, the restriction

        \[ F^{\operatorname {\mathrm{iso}}}_{A,B} \colon \operatorname {\mathrm{Iso}}_{\mathcal{C}}(A,B) \to \operatorname {\mathrm{Iso}}_{\mathcal{D}}(F_{A},F_{B}) \]

        of the action on morphisms of $F$ at $(A,B)$ to isomorphisms is surjective.

    3. (c)

      We have an isocomma square of the form

      in $\mathsf{Cats}_{\mathsf{2}}$ up to equivalence.

    4. (d)

      We have an isocomma square of the form

      in $\mathsf{Cats}_{\mathsf{2}}$ up to equivalence.

    5. (e)

      For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the postcomposition1 functor

      \[ F_{*}\colon \mathsf{Fun}(\mathcal{X},\mathcal{C})\to \mathsf{Fun}(\mathcal{X},\mathcal{D}) \]

      is pseudomonic.

  2. 2.

    Conservativity. If $F$ is pseudomonic, then $F$ is conservative.

  3. 3.

    Essential Injectivity. If $F$ is pseudomonic, then $F$ is essentially injective.


  1. 1Asking the precomposition functors
    \[ F^{*}\colon \mathsf{Fun}(\mathcal{D},\mathcal{X})\to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]
    to be pseudomonic leads to pseudoepic functors; see Item 1b of Item 1 of Proposition 11.7.5.1.2.

Item 1: Characterisations
Omitted.

Item 2: Conservativity
Omitted.

Item 3: Essential Injectivity
Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: