A functor $F\colon \mathcal{C}\to \mathcal{D}$ is pseudomonic if it satisfies the following conditions:
-
1.
For all diagrams of the form
if we have\[ \operatorname {\mathrm{id}}_{F}\mathbin {\star }\alpha =\operatorname {\mathrm{id}}_{F}\mathbin {\star }\beta , \]then $\alpha =\beta $.
-
2.
For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$ and each natural isomorphism
there exists a natural isomorphismsuch that we have an equalityof pasting diagrams, i.e. such that we have\[ \beta =\operatorname {\mathrm{id}}_{F}\mathbin {\star }\alpha . \]