A functor $F\colon \mathcal{C}\to \mathcal{D}$ is pseudomonic if it satisfies the following conditions:
Let $\mathcal{C}$ and $\mathcal{D}$ be categories.
A functor $F\colon \mathcal{C}\to \mathcal{D}$ is pseudomonic if it satisfies the following conditions:
For all diagrams of the form
then $\alpha =\beta $.
For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$ and each natural isomorphism
Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.
Characterisations. The following conditions are equivalent:
The functor $F$ is pseudomonic.
The functor $F$ satisfies the following conditions:
The functor $F$ is faithful, i.e. for each $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, the action on morphisms
of $F$ at $\webleft (A,B\webright )$ is injective.
For each $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, the restriction
of the action on morphisms of $F$ at $\webleft (A,B\webright )$ to isomorphisms is surjective.
We have an isocomma square of the form
We have an isocomma square of the form
For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the postcomposition1 functor
is pseudomonic.
Conservativity. If $F$ is pseudomonic, then $F$ is conservative.
Essential Injectivity. If $F$ is pseudomonic, then $F$ is essentially injective.