11.7.2 Monomorphisms of Categories

Let $\mathcal{C}$ and $\mathcal{D}$ be categories.

A functor $F\colon \mathcal{C}\to \mathcal{D}$ is a monomorphism of categories if it is a monomorphism in $\mathsf{Cats}$ (see Unresolved reference, Unresolved reference).

Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.

  1. 1.

    Characterisations. The following conditions are equivalent:

    1. (a)

      The functor $F$ is a monomorphism of categories.

    2. (b)

      The functor $F$ is injective on objects and morphisms, i.e. $F$ is injective on objects and the map

      \[ F\colon \operatorname {\mathrm{Mor}}\webleft (\mathcal{C}\webright )\to \operatorname {\mathrm{Mor}}\webleft (\mathcal{D}\webright ) \]

      is injective.

Item 1: Characterisations
Omitted.

Is there a characterisation of functors $F\colon \mathcal{C}\to \mathcal{D}$ such that:

  1. 1.

    For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the precomposition functor

    \[ F^{*}\colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )\to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

    is a monomorphism of categories?

  2. 2.

    For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the postcomposition functor

    \[ F_{*}\colon \mathsf{Fun}\webleft (\mathcal{X},\mathcal{C}\webright )\to \mathsf{Fun}\webleft (\mathcal{X},\mathcal{D}\webright ) \]

    is a monomorphism of categories?

This question also appears as [Emily, Characterisations of functors $F$ such that $F^*$ or $F_*$ is [property], e.g. faithful, conservative, etc].


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: