The identity natural transformation $\operatorname {\mathrm{id}}_{F}\colon F\Rightarrow F$ of $F$ is the natural transformation consisting of the collection
defined by
for each $A\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$.
The identity natural transformation $\operatorname {\mathrm{id}}_{F}\colon F\Rightarrow F$ of $F$ is the natural transformation consisting of the collection
defined by
for each $A\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$.
The naturality condition for $\operatorname {\mathrm{id}}_{F}$ is the requirement that, for each morphism $f\colon A\to B$ of $\mathcal{C}$, the diagram
where we have applied unitality twice.
Let $A$ and $B$ be monoids and let $f,g\colon A\rightrightarrows B$ be morphisms of monoids. Applying the delooping construction of , we obtain functors $\mathsf{B}{f},\mathsf{B}{g}\colon \mathsf{B}{A}\rightrightarrows \mathsf{B}{B}$. We then have
Unwinding the definitions in this case, we see that a transformation $\alpha $ from $\mathsf{B}{f}$ to $\mathsf{B}{g}$ consists of a collection
of morphisms of $\mathsf{B}{B}$ indexed by $\operatorname {\mathrm{Obj}}\webleft (\mathsf{B}{A}\webright )$. Since $\operatorname {\mathrm{Obj}}\webleft (\mathsf{B}{A}\webright )=\mathrm{pt}$ and the morphisms of $\mathsf{B}{B}$ are precisely the elements of $B$, it follows that $\alpha $ corresponds precisely to the data of an element $b\in B$. Now, a transformation $\webleft [b\webright ]\colon \mathsf{B}{f}\Rightarrow \mathsf{B}{g}$ is natural precisely if, for each $a\in \operatorname {\mathrm{Hom}}_{\mathsf{B}{A}}\webleft (\bullet ,\bullet \webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A$, the diagram