11.6.1 Faithful Functors

Let $\mathcal{C}$ and $\mathcal{D}$ be categories.

A functor $F\colon \mathcal{C}\to \mathcal{D}$ is faithful if, for each $A,B\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, the action on morphisms

\[ F_{A,B} \colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B) \to \operatorname {\mathrm{Hom}}_{\mathcal{D}}(F_{A},F_{B}) \]

of $F$ at $(A,B)$ is injective.

Let $F\colon \mathcal{C}\to \mathcal{D}$ and $G\colon \mathcal{D}\to \mathcal{E}$ be functors.

  1. 1.

    Interaction With Composition. If $F$ and $G$ are faithful, then so is $G\circ F$.

  2. 2.

    Interaction With Postcomposition. The following conditions are equivalent:

    1. (a)

      The functor $F\colon \mathcal{C}\to \mathcal{D}$ is faithful.

    2. (b)

      For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the postcomposition functor

      \[ F_{*} \colon \mathsf{Fun}(\mathcal{X},\mathcal{C}) \to \mathsf{Fun}(\mathcal{X},\mathcal{D}) \]

      is faithful.

    3. (c)

      The functor $F\colon \mathcal{C}\to \mathcal{D}$ is a representably faithful morphism in $\mathsf{Cats}_{\mathsf{2}}$ in the sense of Chapter 14: Types of Morphisms in Bicategories, Definition 14.1.1.1.1.

  3. 3.

    Interaction With Precomposition I. Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.

    1. (a)

      If $F$ is faithful, then the precomposition functor

      \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

      can fail to be faithful.

    2. (b)

      Conversely, if the precomposition functor

      \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

      is faithful, then $F$ can fail to be faithful.

  4. 4.

    Interaction With Precomposition II. If $F$ is essentially surjective, then the precomposition functor

    \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

    is faithful.

  5. 5.

    Interaction With Precomposition III. The following conditions are equivalent:

    1. (a)

      For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the precomposition functor

      \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

      is faithful.

    2. (b)

      For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the precomposition functor

      \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

      is conservative.

    3. (c)

      For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the precomposition functor

      \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

      is monadic.

    4. (d)

      The functor $F\colon \mathcal{C}\to \mathcal{D}$ is a corepresentably faithful morphism in $\mathsf{Cats}_{\mathsf{2}}$ in the sense of Chapter 14: Types of Morphisms in Bicategories, Definition 14.2.1.1.1.

    5. (e)

      The components

      \[ \eta _{G}\colon G\Longrightarrow \operatorname {\mathrm{Ran}}_{F}(G\circ F) \]

      of the unit

      \[ \eta \colon \operatorname {\mathrm{id}}_{\mathsf{Fun}(\mathcal{D},\mathcal{X})}\Longrightarrow \operatorname {\mathrm{Ran}}_{F}\circ F^{*} \]

      of the adjunction $F^{*}\dashv \operatorname {\mathrm{Ran}}_{F}$ are all monomorphisms.

    6. (f)

      The components

      \[ \epsilon _{G}\colon \operatorname {\mathrm{Lan}}_{F}(G\circ F)\Longrightarrow G \]

      of the counit

      \[ \epsilon \colon \operatorname {\mathrm{Lan}}_{F}\circ F^{*}\Longrightarrow \operatorname {\mathrm{id}}_{\mathsf{Fun}(\mathcal{D},\mathcal{X})} \]

      of the adjunction $\operatorname {\mathrm{Lan}}_{F}\dashv F^{*}$ are all epimorphisms.

    7. (g)

      The functor $F$ is dominant (Definition 11.7.1.1.1), i.e. every object of $\mathcal{D}$ is a retract of some object in $\mathrm{Im}(F)$:

      • (★)
      • For each $B\in \operatorname {\mathrm{Obj}}(\mathcal{D})$, there exist:
        • An object $A$ of $\mathcal{C}$;

        • A morphism $s\colon B\to F(A)$ of $\mathcal{D}$;

        • A morphism $r\colon F(A)\to B$ of $\mathcal{D}$;

        such that $r\circ s=\operatorname {\mathrm{id}}_{B}$.

Item 1: Interaction With Composition
Since the map

\[ (G\circ F)_{A,B} \colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B) \to \operatorname {\mathrm{Hom}}_{\mathcal{D}}(G_{F_{A}},G_{F_{B}}), \]

defined as the composition

\[ \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B)\xrightarrow {F_{A,B}}\operatorname {\mathrm{Hom}}_{\mathcal{D}}(F_{A},F_{B})\xrightarrow {G_{F(A),F(B)}}\operatorname {\mathrm{Hom}}_{\mathcal{D}}(G_{F_{A}},G_{F_{B}}), \]

is a composition of injective functions, it follows from Chapter 4: Constructions With Sets, Item 2a of Item 2 of Proposition 4.7.1.1.2 that it is also injective. Therefore $G\circ F$ is faithful.

Item 2: Interaction With Postcomposition
Omitted.

Item 3: Interaction With Precomposition I
See [Lin, Precomposition with a faithful functor] for Item 3a. Item 3b follows from Item 4 and the fact that there are essentially surjective functors that are not faithful.

Item 4: Interaction With Precomposition II
Omitted, but see for a formalised proof.

Item 5: Interaction With Precomposition III
We claim Item 5a, Item 5b, Item 5c, Item 5d, Item 5e, Item 5f, and Item 5g are equivalent:

This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: