11.6.1 Faithful Functors

    Let $\mathcal{C}$ and $\mathcal{D}$ be categories.

    A functor $F\colon \mathcal{C}\to \mathcal{D}$ is faithful if, for each $A,B\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, the action on morphisms

    \[ F_{A,B} \colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B) \to \operatorname {\mathrm{Hom}}_{\mathcal{D}}(F_{A},F_{B}) \]

    of $F$ at $(A,B)$ is injective.

    Let $F\colon \mathcal{C}\to \mathcal{D}$ and $G\colon \mathcal{D}\to \mathcal{E}$ be functors.

    1. 1.

      Interaction With Composition. If $F$ and $G$ are faithful, then so is $G\circ F$.

    2. 2.

      Interaction With Postcomposition. The following conditions are equivalent:

      1. (a)

        The functor $F\colon \mathcal{C}\to \mathcal{D}$ is faithful.

      2. (b)

        For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the postcomposition functor

        \[ F_{*} \colon \mathsf{Fun}(\mathcal{X},\mathcal{C}) \to \mathsf{Fun}(\mathcal{X},\mathcal{D}) \]

        is faithful.

      3. (c)

        The functor $F\colon \mathcal{C}\to \mathcal{D}$ is a representably faithful morphism in $\mathsf{Cats}_{\mathsf{2}}$ in the sense of Chapter 14: Types of Morphisms in Bicategories, Definition 14.1.1.1.1.

    3. 3.

      Interaction With Precomposition I. Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.

      1. (a)

        If $F$ is faithful, then the precomposition functor

        \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

        can fail to be faithful.

      2. (b)

        Conversely, if the precomposition functor

        \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

        is faithful, then $F$ can fail to be faithful.

    4. 4.

      Interaction With Precomposition II. If $F$ is essentially surjective, then the precomposition functor

      \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

      is faithful.

    5. 5.

      Interaction With Precomposition III. The following conditions are equivalent:

      1. (a)

        For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the precomposition functor

        \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

        is faithful.

      2. (b)

        For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the precomposition functor

        \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

        is conservative.

      3. (c)

        For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the precomposition functor

        \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

        is monadic.

      4. (d)

        The functor $F\colon \mathcal{C}\to \mathcal{D}$ is a corepresentably faithful morphism in $\mathsf{Cats}_{\mathsf{2}}$ in the sense of Chapter 14: Types of Morphisms in Bicategories, Definition 14.2.1.1.1.

  • (e)

    The components

    \[ \eta _{G}\colon G\Longrightarrow \operatorname {\mathrm{Ran}}_{F}(G\circ F) \]

    of the unit

    \[ \eta \colon \operatorname {\mathrm{id}}_{\mathsf{Fun}(\mathcal{D},\mathcal{X})}\Longrightarrow \operatorname {\mathrm{Ran}}_{F}\circ F^{*} \]

    of the adjunction $F^{*}\dashv \operatorname {\mathrm{Ran}}_{F}$ are all monomorphisms.

  • (f)

    The components

    \[ \epsilon _{G}\colon \operatorname {\mathrm{Lan}}_{F}(G\circ F)\Longrightarrow G \]

    of the counit

    \[ \epsilon \colon \operatorname {\mathrm{Lan}}_{F}\circ F^{*}\Longrightarrow \operatorname {\mathrm{id}}_{\mathsf{Fun}(\mathcal{D},\mathcal{X})} \]

    of the adjunction $\operatorname {\mathrm{Lan}}_{F}\dashv F^{*}$ are all epimorphisms.

  • (g)

    The functor $F$ is dominant (Definition 11.7.1.1.1), i.e. every object of $\mathcal{D}$ is a retract of some object in $\mathrm{Im}(F)$:

    • (★)
    • For each $B\in \operatorname {\mathrm{Obj}}(\mathcal{D})$, there exist:
      • An object $A$ of $\mathcal{C}$;

      • A morphism $s\colon B\to F(A)$ of $\mathcal{D}$;

      • A morphism $r\colon F(A)\to B$ of $\mathcal{D}$;

      such that $r\circ s=\operatorname {\mathrm{id}}_{B}$.
  • Item 1: Interaction With Composition
    Since the map

    \[ (G\circ F)_{A,B} \colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B) \to \operatorname {\mathrm{Hom}}_{\mathcal{D}}(G_{F_{A}},G_{F_{B}}), \]

    defined as the composition

    \[ \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B)\xrightarrow {F_{A,B}}\operatorname {\mathrm{Hom}}_{\mathcal{D}}(F_{A},F_{B})\xrightarrow {G_{F(A),F(B)}}\operatorname {\mathrm{Hom}}_{\mathcal{D}}(G_{F_{A}},G_{F_{B}}), \]

    is a composition of injective functions, it follows from Chapter 4: Constructions With Sets, Item 2a of Item 2 of Proposition 4.7.1.1.2 that it is also injective. Therefore $G\circ F$ is faithful.

    Item 2: Interaction With Postcomposition
    Omitted.

    Item 3: Interaction With Precomposition I
    See [Lin, Precomposition with a faithful functor] for Item 3a. Item 3b follows from Item 4 and the fact that there are essentially surjective functors that are not faithful.

    Item 4: Interaction With Precomposition II
    Omitted, but see for a formalised proof.

    Item 5: Interaction With Precomposition III
    We claim Item 5a, Item 5b, Item 5c, Item 5d, Item 5e, Item 5f, and Item 5g are equivalent:

    This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: